339 Matching Results

Search Results

Advanced search parameters have been applied.

ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

Description: As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger Data & Consulting Services (DCS) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have enhanced and streamlined our software, and we are using the final version of our new Microsoft{trademark} Access/Excel programs. During the last quarter of 2002, we received additional data for approximately 2,200 wells from Great Lakes. This information pertains to their Cooperstown field located in northwestern Pennsylvania. We recognized approximately 130 potential remediation candidates, and Great Lakes' personnel are currently reviewing this list for viable remediation. This field has provided a rigorous test of our software and analytical methods. We have processed all the information provided to us including the Cooperstown data. Great Lakes also provided supplemental data listing the original operator of the wells. We are also determining whether a statistically significant number of underperformers correlate to specific operators and/or their associated completion/stimulation methods. In addition, the DOE has reviewed a draft version of a final report.
Date: April 1, 2003
Creator: MacDonald, Ronald J.
Partner: UNT Libraries Government Documents Department

ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

Description: As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger Data & Consulting Services (DCS) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify underperforming wells with remediation potential. We have enhanced and streamlined our software and are using it with the latest versions of Microsoft's{trademark} Access and Excel programs. During the last quarter of 2002, Great Lakes provided us with additional data for approximately 2,200 wells located in their Cooperstown field situated in northwestern Pennsylvania. We identified approximately 130 potential remediation candidates, and Great Lakes personnel are currently reviewing this list for viable remediation. Within the last few weeks, a list of five candidates have been chosen for refract, in addition to two alternate wells. This field has provided a rigorous test of our software and analytical methods. We have processed all the information provided to us including the Cooperstown data. Great Lakes also provided supplemental data listing the original operator of the wells. We have determined whether a statistically significant number of underperformers correlate to specific operators and/or their associated completion/stimulation methods. In addition, the DOE has reviewed a draft version of a final report.
Date: July 14, 2004
Creator: MacDonald, Ronald J.
Partner: UNT Libraries Government Documents Department

ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

Description: As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have enhanced and streamlined our software, and we are using the final version of our new Microsoft{trademark} Access/Excel based software. We have processed all well information and identified potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, the final technical report is almost finished and a draft version has been reviewed by DOE.
Date: July 1, 2002
Creator: II, Charles M. Boyer & MacDonald, Ronald J.
Partner: UNT Libraries Government Documents Department

ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

Description: As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger--Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft{trademark} Access/Excel based software. We are continuing to process this well data and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway.
Date: October 1, 2001
Creator: Boyer, Charles M., II & MacDonald, Ronald J.
Partner: UNT Libraries Government Documents Department

ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

Description: As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger--Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We are currently in the final stages of developing and testing our new Microsoft{trademark} Access/Excel based software. We will be processing this well data and identifying potential candidate wells that can be used in Phase 2 to validate these methodologies. Preparation of the final technical report is underway.
Date: April 1, 2001
Creator: Boyer, Charles M., II & MacDonald, Ronald J.
Partner: UNT Libraries Government Documents Department

ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

Description: As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger--Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft{trademark} Access/Excel based software. We are continuing to process this well data and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway.
Date: July 1, 2001
Creator: Boyer, Charles M., II & MacDonald, Ronald J.
Partner: UNT Libraries Government Documents Department

Advanced Mud System for Microhole Coiled Tubing Drilling

Description: An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.
Date: December 1, 2008
Creator: Oglesby, Kenneth
Partner: UNT Libraries Government Documents Department

Deep Drilling Basic Research: Volume 5 - System Evaluations. Final Report, November 1988--August 1990

Description: This project is aimed at decreasing the costs and increasing the efficiency of drilling gas wells in excess of 15,000 feet. This volume presents a summary of an evaluation of various drilling techniques. Drilling solutions were compared quantitatively against typical penetration rates derived from conventional systems. A qualitative analysis measured the impact of a proposed system on the drilling industry. The evaluations determined that the best candidates f o r improving the speed and efficiency of drilling deep gas wells include: PDC/TSD bits, slim-hole drilling, roller-cone bits, downhole motors, top-driven systems, and coiled-tubing drilling.
Date: June 1, 1990
Partner: UNT Libraries Government Documents Department

Development of a Through Tubing (Microhole) Artificial Lift System

Description: The goal of this project was to develop a small diameter pump system capable of being deployed through existing production tubing strings in oil/gas wells. The pump system would then pump water up an inner tubing string (likely coil tubing) and allow gas to flow in the annulus between the coil tubing and production tubing. Accomplishing this would allow wells that are currently loaded up (unable to flow at high enough rates to lift the fluid out of the wellbore) to continue to produce additional gas/oil reserves. The project was unable to complete a working test system due to unforeseen complexities in coupling the system components together in part due to the small diameter. Although several of the individual components were sourced and secured, coupling them together and getting electricity to the motor proved technically more difficult than expected. Thus, the project is no longer active due primarily to the complications realized in coupling the components and the difficulties in getting electricity to the submersible motor in a slimhole system. The other problem in finishing this project was the lack of financial resources. When the grant was first applied for it was expected that it would be awarded in early 2004. Since the grant was not actually awarded until the end of August 2004, GPS had basically run out of $$$ and the principle developer (Steve Bodden) had to find a full time job which began in late July 2004. When the grant was finally awarded in late August, it was still hoped that the project could proceed as a part time development but with less financial exposure to the partners in GPS. This became very problematic as it still had many technical obstacles to overcome to get it to the stage of prototype testing.
Date: September 30, 2006
Creator: Bodden, Steve
Partner: UNT Libraries Government Documents Department

Increasing Production from Low-Permeability Gas Reservoirs by Optimizing Zone Isolation for Successful Stimulation Treatments

Description: Maximizing production from wells drilled in low-permeability reservoirs, such as the Barnett Shale, is determined by cementing, stimulation, and production techniques employed. Studies show that cementing can be effective in terms of improving fracture effectiveness by 'focusing' the frac in the desired zone and improving penetration. Additionally, a method is presented for determining the required properties of the set cement at various places in the well, with the surprising result that uphole cement properties in wells destined for multiple-zone fracturing is more critical than those applied to downhole zones. Stimulation studies show that measuring pressure profiles and response during Pre-Frac Injection Test procedures prior to the frac job are critical in determining if a frac is indicated at all, as well as the type and size of the frac job. This result is contrary to current industry practice, in which frac jobs are designed well before the execution, and carried out as designed on location. Finally, studies show that most wells in the Barnett Shale are production limited by liquid invasion into the wellbore, and determinants are presented for when rod or downhole pumps are indicated.
Date: March 31, 2005
Creator: Sabins, Fred
Partner: UNT Libraries Government Documents Department

Counter-Rotating Tandem Motor Drilling System

Description: Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, ...
Date: April 30, 2009
Creator: Perry, Kent
Partner: UNT Libraries Government Documents Department

SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT IN THE MID-CONTINENT

Description: Stripper gas wells are an important source of domestic energy supply and under constant threat of permanent loss (shut-in) due to marginal economics. In 1998, 192 thousand stripper gas wells produced over a Tcf of gas, at an average rate of less than 16 Mcfd. This represents about 57% of all producing gas wells in the onshore lower-48 states, yet only 8% of production. Reserves of stripper gas wells are estimated to be only 1.6 Tcf, or slightly over 1% of the onshore lower-48 total (end of year 1996 data). Obviously, stripper gas wells are at the very margin of economic sustenance. As the demand for natural gas in the U.S. grows to the forecasted estimate of over 30 Tcf annually by the year 2010, supply from current conventional sources is expected to decline. Therefore, an important need exists to fully exploit known domestic resources of natural gas, including those represented by stripper gas wells. The overall objectives of this project are to develop an efficient and low-cost methodology to broadly categorize the well performance characteristics for a stripper gas field, identify the high-potential candidate wells for remediation, and diagnose the specific causes for well underperformance. With this capability, stripper gas well operators can more efficiently and economically produce these resources and maximize these gas reserves. A further objective is to identify/develop, evaluate and test ''new and novel,'' economically viable remediation options. Finally, it is the objective of this project that all the methods and technologies developed in this project, while being tested in the Mid-Continent, be widely applicable to stripper gas wells of all types across the country. The project activities during the reporting period were: (1) The search for another field site was abandoned after discussion with DOE. There is a clear absence of willing industry partners to ...
Date: March 1, 2003
Creator: Reeves, Scott
Partner: UNT Libraries Government Documents Department

ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

Description: As part of Phase 1 in the Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger--Holditch Reservoir Technologies (H-RT) has partnered with two Appalachian Basin producers, Great Lakes Energy (formerly Range Resources) and Belden & Blake Corporation, to develop methodologies for the identification and enhancement of stripper wells with economic upside potential. These industry partners have provided data for over 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We are currently processing the production and well data and developing our new Access/Excel based software that incorporates our identification methodologies. Upon completion we will generate a list of potential candidate wells that can be used in Phase 2 to validate these methodologies.
Date: October 1, 2000
Creator: II, C.M. Boyer; N.,R. Fairchild, Jr. & P.G., R.J. MacDonald
Partner: UNT Libraries Government Documents Department

LOW COST METHODOLOGIES TO ANALYZE AND CORRECT ABNORMAL PRODUCTION DECLINE IN STRIPPER GAS WELLS

Description: The goal of this research program is to develop and deliver a procedure guide of low cost methodologies to analyze and correct problems with stripper wells experiencing abnormal production declines. A study group of wells will provide data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the historic frequency of the cases of the production problems. Once the most frequently occurring causes of the production problems are determined, data collection forms and decision trees will be designed to cost-effectively diagnose these problems and suggest corrective action. Finally, economic techniques to solve the most frequently occurring problems will be research and implemented. These systematic methodologies and techniques will increase the efficiency of problem assessment and implementation of solutions for stripper gas wells. This fifth quarterly technical report describes the data reduction and methodology to develop diagnostic tools to evaluate the cause of declines in problem wells, specifically addressing the development of data gathering forms for tubing plunger wells, casing plunger wells, pumping wells, and swab or flow wells. This report also describes the methodology to select a group of wells for field review utilizing data gathering forms developed during this quarter.
Date: January 1, 2001
Creator: James, Jerry; Huck, Gene & Knobloch, Tim
Partner: UNT Libraries Government Documents Department

Permeability reduction by pyrobitumen, mineralization, and stress along large natural fractures in sandstones at 18,300 ft. depth: Destruction of a reservoir

Description: Production of gas from the Frontier Formation at 18,300 R depth in the Frewen No. 4 Deep well, eastern Green River basin (Wyoming), was uneconomic despite the presence of numerous open natural fractures. Initial production tested at 500 MCFD, but dropped from 360 MCFD to 140 MCFD during a 10-day production test, and the well was abandoned. Examination of the fractures in the core suggests several probable reasons for this poor production. One factor is the presence of a hydrocarbon residue (carbon) which filled much of the porosity left in the smaller fractures after mineralization. An equally important factor is probably the reorientation of the in situ horizontal compressive stress to a trend normal to the main fractures, and which now acts to close fracture apertures rapidly during reservoir drawdown. This data set has unpleasant implications for the search for similar, deep fractured reservoirs.
Date: November 1, 1996
Creator: Lorenz, J.C.; Billingsley, R.L. & Evans, L.W.
Partner: UNT Libraries Government Documents Department

Microseismic monitoring of the B-sand hydraulic fracture experiment at the DOE/GRI multi-site project

Description: Six hydraulic-fracture injections into a fluvial sandstone at a depth of 4500 ft were monitored with multi-level triaxial seismic receivers in two wells, resulting in maps of the growth and final geometry of each fracture based upon microseismic activity. These diagnostic images show that the hydraulic fractures are highly contained for smaller-volume KCl-water injections, but height growth is significant for the larger-volume, higher-rate, higher-viscosity treatments. Fracture lengths for most injections are similar. Final results are also compared with fracture models.
Date: November 1996
Creator: Warpinski, N. R.; Wright, T. B.; Peterson, R. E. & Branagan, P. T.
Partner: UNT Libraries Government Documents Department

Low cost methodologies to analyze and correct abnormal production decline in stripper gas wells

Description: The goal of this research program is to develop and deliver a procedure guide of low cost methodologies to analyze and correct problems with stripper wells experiencing abnormal production declines. A study group of wells will provide data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the historic frequency of the causes of the production problems. Once the most frequently occurring causes of the production problems are determined, data collection forms and decision trees will be designed to cost-effectively diagnose these problems and suggest corrective action. Finally, economic techniques to solve the most frequently occurring problems will be researched and implemented. These systematic methodologies and techniques will increase the efficiency of problem assessment and implementation of solutions for stripper gas wells. This second quarterly technical report describes the data reduction and methodology to develop data collection forms of pertinent information to assist in analysis of problem wells. The report also describes the procedures to categorize individual well problems. Finally, the report summarizes the frequency of individual well problems.
Date: April 1, 2000
Creator: James, J.; Huck, G. & Knobloch, T.
Partner: UNT Libraries Government Documents Department

A Study of the Effects of Gas Well Compressor Noise on Breeding Bird Populations of the Rattlesnake Canyon Habitat Management Area, San Juan County, New Mexico

Description: This report, conducted from May through July 2000, addressed the potential effect of compressor noise on breeding birds in gas-production areas administered by the FFO, specifically in the Rattlesnake Canyon Habitat Management Area northeast of Farmington, New Mexico. The study was designed to quantify and characterize noise output from these compressors and to determine if compressor noise affected bird populations in adjacent habitat during the breeding season.
Date: June 4, 2001
Creator: LaGory, K.E.; Chang, Young-Soo; Chun, K.C.; Reeves, T.; Liebich, R. & Smith, K.
Partner: UNT Libraries Government Documents Department

Low cost methodologies to analyze and correct abnormal production decline in stripper gas wells

Description: The goal of this research program is to develop and deliver a procedure guide of low cost methodologies to analyze and correct problems with stripper wells experiencing abnormal production declines. A study group of wells will provide data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the historic frequency of the causes of the production problems. Once the most frequently occurring causes of the production problems are determined, data collection forms and decision trees will be designed to cost-effectively diagnose these problems and suggest corrective action. Finally, economic techniques to solve the most frequently occurring problems will be researched and implemented. These systematic methodologies and techniques will increase the efficiency of problem assessment and implementation of solutions for stripper gas wells. This first quarterly technical report describes the data reduction and methodology to establish a study group of stripper gas wells in which Artex Oil Company or its affiliate, Arloma Corporation, own a working or royalty interest. The report describes the procedures to define wells exhibiting abnormal decline and identify the associated problem. Finally, the report discusses initial development of diagnostic procedures to evaluate the cause of abnormal production declines.
Date: January 1, 2000
Creator: James, J.; Huck, G. & Knobloch, T.
Partner: UNT Libraries Government Documents Department

Low cost methodologies to analyze and correct abnormal production decline in stripper gas wells

Description: The goal of this research program is to develop and deliver a procedure guide of low cost methodologies to analyze and correct problems with stripper wells experiencing abnormal production declines. A study group of wells will provide data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the historic frequency of the causes of the production problems. Once the most frequently occurring causes of the production problems are determined, data collection forms and decision trees will be designed to cost-effectively diagnose these problems and suggest corrective action. Finally, economic techniques to solve the most frequently occurring problems will be researched and implemented. These systematic methodologies and techniques will increase the efficiency of problem assessment and implementation of solutions for stripper gas wells. This third quarterly technical report was to describe the data reduction and methodologies to develop decision trees, identify cost effective techniques to solve the most frequently experienced problems and then apply the methodology to a group of wells where recent problems have developed. Further, this third quarterly technical report was to describe the data reduction and methodologies to select the two wells with the greatest potential for increase and also having the most frequently occurring problem, and evaluate the results of the methodology and the implemented procedure. However, preparation and analysis of the decision trees is more complex than initially anticipated due to the combination of problems rather than identifiable individual problems. Therefore, this portion of the study is still in progress. We have requested and been granted verbal approval for a six month no cost extension to allow more time to thoroughly investigate this portion of the study. The delivery of the decision trees will be included in future technical reports. Work on the other tasks to be completed ...
Date: July 1, 2000
Creator: James, J.; Huck, G. & Knobloch, T.
Partner: UNT Libraries Government Documents Department

LOW COST METHODOLOGIES TO ANALYZE AND CORRECT ABNORMAL PRODUCTION DECLINE IN STRIPPER GAS WELLS

Description: The goal of this research program is to develop and deliver a procedure guide of low cost methodologies to analyze and correct problems with stripper wells experiencing abnormal production declines. A study group of wells will provide data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the historic frequency of the causes of the production problems. Once the most frequently occurring causes of the production problems are determined, data collection forms and decision trees will be designed to cost-effectively diagnose these problems and suggest corrective action. Finally, economic techniques to solve the most frequently occurring problems will be researched and implemented. These systematic methodologies and techniques will increase the efficiency of problem assessment and implementation of solutions for stripper gas wells. According to the original proposal, this fourth quarterly technical report was to deliver a procedure guide, a summary report, and a Society of Petroleum Engineers technical paper. However, James Engineering, Inc. was granted a six month, no cost extension to allow the required time to thoroughly investigate and prepare these portions of the study, therefore completion of the current deliverables has been re-scheduled. James Engineering, Inc. did present preliminary results of the study during a panel discussion on Stripper Gas Wells at the Society of Petroleum Engineers' Eastern Regional Meeting held in Morgantown, West Virginia October 19, 2000. No cost to the study was incurred for the preliminary presentation.
Date: October 1, 2000
Creator: James, Jerry; Huck, Gene & Knobloch, Tim
Partner: UNT Libraries Government Documents Department

ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

Description: As part of Task 1 in the Advanced Technologies for Stripper Gas Well Enhancement, Holditch-Reservoir Technologies has partnered with two Appalachian Basin producers, Great Lakes Energy (formerly Range Resources) and Belden & Blake Corporation, to develop methodologies for the identification and enhancement of stripper wells with economic upside potential. The industry partners have provided data for over 700 wells in northwest Pennsylvania. The Task 1 goals of this project are to develop and validate methodologies that can quickly and cost effectively identify wells with enhancement potential. We are currently working with the well data supplied by the industry partners to develop and validate these methodologies.
Date: April 1, 2000
Creator: II, C.M. Boyer & N.R. Fairchild, Jr.
Partner: UNT Libraries Government Documents Department

LOW COST METHODOLOGIES TO ANALYZE AND CORRECT ABNORMAL PRODUCTION DECLINE IN STRIPPER GAS WELLS

Description: A study group of 376 Clinton Sand wells in Ohio provided data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the causes of the abnormal production decline. Analysis of the historic frequency of the problem indicates over 70% of the wells experienced abnormal production decline. The most frequently occurring causes of abnormal production declines were determined to be fluid accumulation (46%), gas gathering restrictions (24%), and mechanical failures (23%). Data collection forms and decision trees were developed to cost-effectively diagnose the abnormal production declines and suggest corrective action. The decision trees and data collection sheets were incorporated into a procedure guide to provide stripper gas well operators with a methodology to analyze and correct abnormal production declines. The systematic methodologies and techniques developed should increase the efficiency of problem well assessment and implementation of solutions for stripper gas wells. This eight quarterly technical progress report provides a summary of the deliverables completed to date, including the results of the remediations, the procedure guide, and the technology transfer. Due to the successful results of the study to date and the efficiency of the methodology development, two to three additional wells will be selected for remediation for inclusion into the study. The results of the additional remediations will be included in the final report.
Date: October 1, 2001
Creator: James, Jerry; Huck, Gene & Knobloch, Tim
Partner: UNT Libraries Government Documents Department