259 Matching Results

Search Results

Advanced search parameters have been applied.

Natural Gas Monthly August 1998

Description: The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. Explanatory notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication.
Date: August 1, 1998
Partner: UNT Libraries Government Documents Department

Natural gas 1996 - issues and trends

Description: This publication presents a summary of the latest data and information relating to the U.S. natural gas industry, including prices, production, transmission, consumption, and financial aspects of the industry.
Date: December 1, 1996
Partner: UNT Libraries Government Documents Department

A guidance document for Kentucky`s oil and gas operators: Quarterly report, April 1-June 30, 1997

Description: During this quarter, the document entitled `A Guidance Document for Kentucky`s Oil and Gas Operators` received final review and editing. Several copies were printed and provided to interested oil and gas operators by mail, through industry meetings and by the Oil and Gas Division inspectors.
Date: December 31, 1997
Partner: UNT Libraries Government Documents Department

A guidance document for Kentucky`s oil and gas operations: July 1-September 30, 1997

Description: This technical report is a summary of the progress made on `A guidance Document for Kentucky`s Oil and Gas Operator`s`. During this quarter, the document received continued review and editing in an electronic format to satisfy the United States Department of Energy (DOE). Comments received from oil and gas operators reviewing this document prompted contact to be made with the United States Environmental Protection Agency (USEPA) to develop an addendum section to provide better explanation of USEPA requirements for Class 11 injection wells.
Date: September 1, 1998
Partner: UNT Libraries Government Documents Department

Low-Quality Natural Gas Sulfur Removal/Recovery System

Description: Natural gas provides more than one-fifth of all the primary energy used in the United States. Much raw gas is `subquality`, that is, it exceeds the pipeline specifications for nitrogen, carbon dioxide, and/or hydrogen sulfide content, and much of this low-quality natural gas cannot be produced economically with present processing technology. Against this background, a number of industry-wide trends are affecting the natural gas industry. Despite the current low price of natural gas, long-term demand is expected to outstrip supply, requiring new gas fields to be developed. Several important consequences will result. First, gas fields not being used because of low-quality products will have to be tapped. In the future, the proportion of the gas supply that must be treated to remove impurities prior to delivery to the pipeline will increase substantially. The extent of treatment required to bring the gas up to specification will also increase. Gas Research Institute studies have shown that a substantial capital investment in facilities is likely to occur over the next decade. The estimated overall investment for all gas processing facilities up to the year 2000 alone is approximates $1.2 Billion, of which acid gas removal and sulfur recovery are a significant part in terms of invested capital. This large market size and the known shortcomings of conventional processing techniques will encourage development and commercialization of newer technologies such as membrane processes. Second, much of today`s gas production is from large, readily accessible fields. As new reserves are exploited, more gas will be produced from smaller fields in remote or offshore locations. The result is an increasing need for technology able to treat small-scale gas streams.
Date: October 1, 1997
Creator: Lokhandwala, K.A.; Ringer, M.; Wijams, H. & Baker, R.W.
Partner: UNT Libraries Government Documents Department

From upstream to downstream: Megatrends and latest developments in Latin America`s hydrocarbons sector

Description: In recent years, Latin America`s hydrocarbons sector has been characterized by reorganization, revitalization, regional cooperation, environmental awakening, and steady expansion. The pattern of these changes, which appear to be the megatrends of the region`s hydrocarbons sector development, will continue during the rest of the 1990s. To further study the current situation and future prospects of Latin America`s hydrocarbons sector, we critically summarize in this short article the key issues in the region`s oil and gas development. These megatrends in Latin America`s hydrocarbons sector development will impact not only the future energy demand and supply in the region, but also global oil flows in the North American market and across the Pacific Ocean. Each country is individually discussed; pipelines to be constructed are discussed also.
Date: August 1, 1995
Creator: Wu, Kang; Pezeshki, S. & McMahon, J.
Partner: UNT Libraries Government Documents Department

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

Description: The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the US petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the first quarterly technical progress report for the SWC. The SWC is in its infancy; however, interest from the petroleum and natural gas industry has grown substantially during this reporting period. As of December 31, 2000, nineteen members have joined the consortium and several other companies have expressed interest. During the last three months, efforts were focused on the development of the necessary infrastructure and membership base to begin the consortium technology development activities. These efforts included: (1) preparing a draft constitution and bylaws, (2) developing draft membership application forms, (3) developing an intellectual property statement, (4) providing overview presentations to trade association meetings, and (5) marketing the consortium individually to potential members. These activities are discussed in further detail in this first quarterly technical progress report.
Date: June 28, 2001
Creator: Morrison, Joel L.
Partner: UNT Libraries Government Documents Department

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas

Description: The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, and we continue, but have as yet been unsuccessful in our attempts, to negotiate with Atmos Energy for a final test of the original project demonstration unit. In the meantime, MTR has located an alternative testing opportunity and signed a contract with Towne Exploration for a demonstration plant in Rio Vista, CA, to be run through May 2007. Several commercial sales have resulted from the partnership with ABB, and total sales of nitrogen/natural gas membrane separation units are now approaching $2.6 million.
Date: September 30, 2006
Creator: Lokhandwala, Kaaeid
Partner: UNT Libraries Government Documents Department

Gas Storage Technology Consortium

Description: Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.
Date: March 31, 2007
Creator: Morrison, Joel L. & Elder, Sharon L.
Partner: UNT Libraries Government Documents Department

Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E & P Field and Gathering Engines

Description: Continuing work in controlled testing uses a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NO{sub X} emissions. Technologies including one pre-combustion chamber, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work tests non-production, prototype, mid-pressure fuel valves and begins analysis of these tests. This analysis reveals questions which must be answered before coming to any firm conclusions about the use of the180 psig fuel valve. The research team plans to continue with the remaining pre-combustion chamber tests in the coming quarter. By using the Ajax DP-115 these tests are completed in a low-cost and efficient manner. The various technologies can be quickly exchanged with different hardware, and it is inexpensive to run the engine. Progress in moving toward field testing is discussed, and a change in strategy is suggested. Although field engines are available to test, it is suggested that the final field testing be put on hold due to information from outside publications during this last quarter. Instead, KSU would focus on related field-testing and characterization in an outside project that will close an apparent technology gap. The results of this characterization will give a more solid footing to the field testing that will complete this project.
Date: September 30, 2006
Creator: Chapman, Kirby S. & Nuss-Warren, Sarah R.
Partner: UNT Libraries Government Documents Department

Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

Description: This quarterly report discusses continuing work in the testing phase of the project that evaluates emission control technologies applied to a two-stroke cycle natural gas-fueled engine. In this phase, a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) is used to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NO{sub x} emissions. This report describes potential emission reduction technologies, some of which have already been tested, and describes progress toward completing remaining tests to evaluate further synergies between some of the more promising technologies. While the end-goal is a closed-loop control system coupled with a low cost NO{sub x} retrofit package, additional work remains. Technologies including pre-combustion chambers, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work focuses on preparing the test cell for tests using a 180 psig fuel valve. By using the Ajax DP-115 these tests are completed in a low-cost and efficient manner. The various technologies can be quickly exchanged with different hardware, and it is inexpensive to run the engine.
Date: December 1, 2005
Creator: Nuss-Warren, Sarah R. & Chapman, Kirby S.
Partner: UNT Libraries Government Documents Department

Natural gas annual 1992: Supplement: Company profiles

Description: The data for the Natural Gas Annual 1991 Supplement : Company Profiles are taken from Form EIA-176, (open quotes) Annual Report of Natural and Supplemental Gas Supply and Disposition (close quotes). Other sources include industry literature and corporate annual reports to shareholders. The companies appearing in this report are major interstate natural gas pipeline companies, large distribution companies, or combination companies with both pipeline and distribution operations. The report contains profiles of 45 corporate families. The profiles describe briefly each company, where it operates, and any important issues that the company faces. The purpose of this report is to show the movement of natural gas through the various States served by the 45 large companies profiled.
Date: January 1, 1994
Partner: UNT Libraries Government Documents Department

ENVIRONMENTAL ASSESSMENT OF OKLAHOMA ABANDONED DRILLING AND PRODUCTION SITES AND ASSOCIATED PUBLIC EDUCATION/OUTREACH ACTIVITIES

Description: The U.S. Department of Energy has participated with the Oklahoma Energy Resource Board (OERB) since 1995 by providing grant funding for on-going work in both environmental assessment of abandoned oilfield exploration and production sites and associated public education/outreach activities. The OERB, a state agency created in 1993 by the Oklahoma legislature, administers programs funded by an assessment of one tenth of one percent on all oil and natural gas produced and sold in the state of Oklahoma. Approximately one half of the funds are used to assess and remediate abandoned oilfield sites and the other half are being used to educate about the importance of the oil and natural gas industry and OERB's environmental efforts. Financial participation through grant funding by the U.S. D.O.E. has been $200,000 annually which represents approximately 3 percent of OERB's private funding. Most of OERB's revenues come from an assessment of 1/10th of 1% on the sale of crude and natural gas in Oklahoma. The assessment is considered voluntary in that any interest owner may ask for a refund annually of their contributions to the fund. On average, 95% of the assessment dollars have remained with OERB, which shows tremendous support by the industry. This Final Report summarizes the progress of the three year grant. The purpose of this three-year project was to continue the progress of the OERB to accomplish its environmental and educational objectives and transfer information learned to other organizations and producing states in the industry.
Date: March 1, 2002
Creator: Terry, Mike
Partner: UNT Libraries Government Documents Department

Stability of natural gas in the deep subsurface

Description: Natural gas is becoming increasingly important as a fuel because of its widespread occurrence and because it has a less significant environmental impact than oil. Many of the known gas accumulations were discovered by accident during exploration for oil, but with increasing demand for gas, successful exploration will require a clearer understanding of the factors that control gas distribution and gas composition. Natural gas is generated by three main processes. In oxygen-deficient, sulfate-free, shallow (few thousand feet) environments bacteria generate biogenic gas that is essentially pure methane with no higher hydrocarbons ({open_quotes}dry gas{close_quotes}). Gas is also formed from organic matter ({open_quotes}kerogen{close_quotes}), either as the initial product from the thermal breakdown of Type III, woody kerogens, or as the final hydrocarbon product from all kerogen types. In addition, gas can be formed by the thermal cracking of crude oil in the deep subsurface. The generation of gas from kerogen requires higher temperatures than the generation of oil. Also, the cracking of oil to gas requires high temperatures, so that there is a general trend from oil to gas with increasing depth. This produces a well-defined {open_quotes}floor for oil{close_quotes}, below which crude oil is not thermally stable. The possibility of a {open_quotes}floor for gas{close_quotes} is less well documented and understanding the limits on natural gas occurrence was one of the main objectives of this research.
Date: July 1, 1996
Creator: Barker, C.
Partner: UNT Libraries Government Documents Department

Natural gas monthly, October 1996

Description: The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.
Date: October 1, 1996
Partner: UNT Libraries Government Documents Department

Performance profiles of major energy producers 1993

Description: Performance Profiles of Major Energy Producers 1993 is the seventeenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 25 major US energy companies required to report annually on Form EIA-28. Financial information is reported by major liens of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the US and abroad. This year`s report analyzes financial and operating developments for 1993 (Part 1: Developments in 1993) and also reviews key developments during the 20 years following the Arab Oil Embargo of 1973--1974 (Part 2: Major Energy Company Strategies Since the Arab Oil Embargo). 49 figs., 104 tabs.
Date: January 1, 1995
Partner: UNT Libraries Government Documents Department

The value of underground storage in today`s natural gas industry

Description: The report consists of three chapters and four appendices. Chapter 1 provides basic information on the role of storage in today`s marketplace where natural gas is treated as a commodity. Chapter 2 provides statistical analyses of the relationship between storage and spot prices on both a monthly and daily basis. For the daily analysis, temperature data were used a proxy for storage withdrawals, providing a new means of examining the short-term relationship between storage and spot prices. Chapter 3 analyzes recent trends in storage management and use, as well as plans for additions to storage capacity. It also reviews the status of the new uses of storage resulting from Order 636, that is, market-based rates and capacity release. Appendix A serves as a stand-along primer on storage operations, and Appendix B provides further data on plans for the expansion of storage capacity. Appendix C explains recent revisions made to working gas and base gas capacity on the part of several storage operators in 1991 through 1993. The revisions were significant, and this appendix provides a consistent historical data series that reflects these changes. Finally, Appendix D presents more information on the regression analysis presented in Chapter 2. 19 refs., 21 figs., 5 tabs.
Date: March 1, 1995
Partner: UNT Libraries Government Documents Department

Natural gas monthly, December 1996

Description: This document highlights activities, events, and analysis of interest to the public and private sector associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.
Date: December 1, 1996
Partner: UNT Libraries Government Documents Department

Increased emphasis on toxics control in oil and gas industry NPDES permits

Description: The 1987 amendments to the Clean Water Act emphasized stricter control of toxics in wastewater discharges. Although state and U.S. Environmental Protection Agency permit writers have had the authority to incorporate strict water quality-based controls in permits, they did not widely use this authority in the past. However, general permits proposed in the past year by Region VI for discharges into the territorial seas of Louisiana and by Region X for coastal and offshore discharges in Alaska are much stricter than their predecessors. The Region VI permit requires numerical produced water limits on arsenic, lead, benzene, total phenols, radium, and whole effluent toxicity. The Region X permit requires numerical produced water limits on copper, arsenic, zinc, total aromatic hydrocarbons, total aqueous hydrocarbons, and whole effluent toxicity. The additional requirements increase the cost of complying with the permit, present more opportunities for exceeding one of the permit limits, and serve as a precedent for future permits. The industry should be prepared to accept the additional costs of these requirements or develop data to convince the regulatory agencies that the increased level of monitoring and permit limits is not necessary to protect water quality. Regulatory agencies should be receptive to new data provided by the industry and flexible in setting additional toxics controls.
Date: October 1, 1996
Creator: Veil, J.A.
Partner: UNT Libraries Government Documents Department

Oil field waste disposal costs at commercial disposal facilities

Description: The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.
Date: October 1, 1997
Creator: Veil, J.A.
Partner: UNT Libraries Government Documents Department

Natural gas imports and exports. Second quarter report

Description: The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the second quarter of 1997 (April through June).
Date: December 31, 1997
Partner: UNT Libraries Government Documents Department

Resource planning for gas utilities: Using a model to analyze pivotal issues

Description: With the advent of wellhead price decontrols that began in the late 1970s and the development of open access pipelines in the 1980s and 90s, gas local distribution companies (LDCs) now have increased responsibility for their gas supplies and face an increasingly complex array of supply and capacity choices. Heretofore this responsibility had been share with the interstate pipelines that provide bundled firm gas supplies. Moreover, gas supply an deliverability (capacity) options have multiplied as the pipeline network becomes increasing interconnected and as new storage projects are developed. There is now a fully-functioning financial market for commodity price hedging instruments and, on interstate Pipelines, secondary market (called capacity release) now exists. As a result of these changes in the natural gas industry, interest in resource planning and computer modeling tools for LDCs is increasing. Although in some ways the planning time horizon has become shorter for the gas LDC, the responsibility conferred to the LDC and complexity of the planning problem has increased. We examine current gas resource planning issues in the wake of the Federal Energy Regulatory Commission`s (FERC) Order 636. Our goal is twofold: (1) to illustrate the types of resource planning methods and models used in the industry and (2) to illustrate some of the key tradeoffs among types of resources, reliability, and system costs. To assist us, we utilize a commercially-available dispatch and resource planning model and examine four types of resource planning problems: the evaluation of new storage resources, the evaluation of buyback contracts, the computation of avoided costs, and the optimal tradeoff between reliability and system costs. To make the illustration of methods meaningful yet tractable, we developed a prototype LDC and used it for the majority of our analysis.
Date: November 1, 1995
Creator: Busch, J.F. & Comnes, G.A.
Partner: UNT Libraries Government Documents Department