4 Matching Results

Search Results

Advanced search parameters have been applied.

Nanoscale Materials Applications: Thermoelectrical, Biological, and Optical Applications with Nanomanipulation Technology

Description: In a sub-wavelength scale, even approaching to the atomic scale, nanoscale physics shows various novel phenomena. Since it has been named, nanoscience and nanotechnology has been employed to explore and exploit this small scale world. For example, with various functionalized features, nanowire (NW) has been making its leading position in the researches of physics, chemistry, biology, and engineering as a miniaturized building block. Its individual characteristic shows superior and unique features compared with its bulk counterpart. As one part of these research efforts and progresses, and with a part of the fulfillment of degree study, novel methodologies and device structures in nanoscale were devised and developed to show the abilities of high performing thermoelectrical, biological, and optical applications. A single β-SiC NW was characterized for its thermoelectric properties (thermal conductivity, Seebeck coefficient, and figure of merit) to compare with its bulk counterpart. The combined structure of Ag NW and ND was made to exhibit its ability of clear imaging of a fluorescent cell. And a plasmonic nanosture of silver (Ag) nanodot array and a β-SiC NW was fabricated to show a high efficient light harvesting device that allows us to make a better efficient solar cell. Novel nanomanipulation techniques were developed and employed in order to fabricate all of these measurement platforms. Additionally, one of these methodological approaches was used to successfully isolate a few layer graphene.
Date: August 2011
Creator: Lee, Kyung-Min
Partner: UNT Libraries

Lipidomic Analysis of Single Cells and Organelles Using Nanomanipulation Coupled to Mass Spectrometry

Description: The capability to characterize disease states by way of determining novel biomarkers has led to a high demand of single cell and organelle analytical methodologies due to the unexpected heterogeneity present in cells of the same type. Lipids are of particular interest in the search for biomarkers due to their active roles in cellular metabolism and energy storage. Analyzing localized lipid chemistry from individual cells and organelles is challenging however, due to low analyte volume, limited discriminate instrumentation, and common requirements of separation procedures and expenditure of cell sample. Using nanomanipulation in combination with mass spectrometry, individual cells and organelles can be extracted from tissues and cultures in vitro to determine if heterogeneity at the cellular level is present. The discriminate extraction of a single cell or organelle allows the remainder of cell culture or tissue to remain intact, while the high sensitivity and chemical specificity of mass spectrometry provides structural information for limited volumes without the need for chromatographic separation. Mass analysis of lipids extracted from individual cells can be carried out in multiple mass spectrometry platforms through direct-inject mass spectrometry using nanoelectrospray-ionization and through matrix-assisted laser/desorption ionization.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2016
Creator: Bowman, Amanda
Partner: UNT Libraries

Analysis of Trace Amounts of Adulterants Found in Powders/Supplements Utilizing Direct Inject, Nanomanipulation, and Mass Spectrometry

Description: The regulations of many food products in the United States have been made and followed very well but unfortunately some products are not put under such rigorous standards as others. This leads to products being sold, that are thought to be healthy, but in reality contain unknown ingredients that may be hazardous to the consumers. With the use of several instrumentations and techniques the detection, characterization and identification of these unknown contaminates can be determined. Both the AZ-100 and the TE2000 inverted microscope were used for visual characterizations, image collection and to help guide the extraction. Direct analyte-probed nanoextraction (DAPNe) technique and nanospray ionization mass spectrometry (NSI-MS) was the technique used for examination and identification of all adulterants. A Raman imaging technique was than introduced and has proven to be a rapid, non-destructive and distinctive way to localize a specific adulterant. By compiling these techniques then applying them to the FDA supplied test samples three major adulterants were detected and identified.
Date: August 2016
Creator: Nnaji, Chinyere
Partner: UNT Libraries

Forensic Science Applications Utilizing Nanomanipulation-Coupled to Nanospray Ionization-Mass Spectrometry for the Analysis of Ultra-Trace Illicit Drugs

Description: Presented in this thesis are two methods that are coupled to the instrumentation for the recovery and analysis of ultra-trace illicit drug residues. The electrostatic dust lifting process is coupled with nanomanipulation-nanospray ionization to retrieve drug particles off of hard surfaces for analysis. For the second method, drug residues from fingerprint impressions are extracted followed by analysis. The methodology of these hyphenated techniques toward forensic science applications is applied as to explore limits of detection, sensitivity, and selectivity of analytes as well as immediacy and efficiency of analysis. The application of nanomanipulation-coupled to nanospray ionization-mass spectrometry toward forensic science based applications is considered as future improvements to trace and ultra-trace analysis.
Date: December 2010
Creator: Wallace, Nicole
Partner: UNT Libraries