22 Matching Results

Search Results

Advanced search parameters have been applied.

Reactor operations informal monthly report, May 1, 1995--May 31, 1995

Description: This document is an informal progress report for the operational performance of the Brookhaven Medical Research Reactor, and the Brookhaven High Flux Beam Reactor, for the month of May, 1995. Both machines ran well during this period, with no reportable instrumentation problems, all scheduled maintenance performed, and only one reportable occurance, involving a particle on Vest Button, Personnel Radioactive Contamination.
Date: May 1, 1995
Creator: Hauptman, H.M.; Petro, J.N. & Jacobi, O.
Partner: UNT Libraries Government Documents Department

Reactor Operations informal monthly report September 1994

Description: This paper presents operations at the MRR and HFBR reactors at Brookhaven National Laboratory for September 1994. Reactor run-times, instrumentation, mechanical maintenance, occurrence reports and safety information are listed. Irradiation summaries are included.
Date: September 1, 1994
Creator: Junker, L.
Partner: UNT Libraries Government Documents Department

Reactor operations Brookhaven medical research reactor, Brookhaven high flux beam reactor informal monthly report

Description: This document is the April 1995 summary report on reactor operations at the Brookhaven Medical Research Reactor and the Brookhaven High Flux Beam Reactor. Ongoing experiments/irradiations in each are listed, and other significant operations functions are also noted. The HFBR surveillance testing schedule is also listed.
Date: April 1, 1995
Creator: Hauptman, H.M.; Petro, J.N. & Jacobi, O.
Partner: UNT Libraries Government Documents Department

Reactor operations: Brookhaven Medical Research Reactor, Brookhaven High Flux Beam Reactor. Informal report, June 1995

Description: Part one of this report gives the operating history of the Brookhaven Medical Research Reactor for the month of June. Also included are the BMRR technical safety surveillance requirements record and the summary of BMRR irradiations for the month. Part two gives the operating histories of the Brookhaven High Flux Beam Reactor and the Cold Neutron Facility at HFBR for June. Also included are the HFBR technical safety surveillance requirements record and the summary of HFBR irradiations for the month.
Date: June 1, 1995
Partner: UNT Libraries Government Documents Department

Radiation dosimetry for NCT facilities at the Brookhaven Medical Research Reactor

Description: Brookhaven Medical Research Reactor (BMRR) is a 3 mega-watt (MW) heterogeneous, tank-type, light water cooled and moderated, graphite reflected reactor, which was designed for medical and biological studies and became operational in 1959. Over time, the BMRR was modified to provide thermal and epithermal neutron beams suitable for research studies. NCT studies have been performed at both the epithermal neutron irradiation facility (ENIF) on the east side of the BMRR reactor core and the thermal neutron irradiation facility (TNIF) on the west side of the core. Neutron and gamma-ray dosimetry performed from 1994 to the present in both facilities are described and the results are presented and discussed.
Date: December 31, 1998
Creator: Holden, N.E.; Hu, J.P.; Greenberg, D.D. & Reciniello, R.N.
Partner: UNT Libraries Government Documents Department

Upgrades of the epithermal neutron beam at the Brookhaven Medical Research Reactor

Description: The first epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR) was installed in 1988 and produced a neutron beam that was satisfactory for the development of NCT with epithermal neutrons. This beam was used routinely until 1992 when the beam was upgraded by rearranging fuel elements in the reactor core to achieve a 50% increase in usable flux. Next, after computer modeling studies, it was proposed that the Al and Al{sub 2}O{sub 3} moderator material in the shutter that produced the epithermal neutrons could be rearranged to enhance the beam further. However, this modification was not started because a better option appeared, namely to use fission plates to move the source of fission neutrons closer to the moderator and the patient irradiation position to achieve more efficient moderation and production of epithermal neutrons. A fission plate converter (FPC) source has been designed recently and, to test the concept, implementation of this upgrade has started. The predicted beam parameters will be 12 x 10{sup 9} n{sub epi}/cm{sup 2}sec accompanying with doses from fast neutrons and gamma rays per epithermal neutron of 2.8 x 10{sup -11} and < 1 x 10{sup -11} cGycm{sup 2}/n, respectively, and a current-to-flux ratio of epithermal neutrons of 0.78. This conversion could be completed by late 1996.
Date: December 31, 1994
Creator: Liu, Hungyuan B.; Brugger, R.M. & Rorer, D.C.
Partner: UNT Libraries Government Documents Department

Reactor beam calculations to determine optimum delivery of epithermal neutrons for treatment of brain tumors

Description: Studies were performed to assess theoretical tumor control probability (TCP) for brain-tumor treatment with boron neutron capture therapy (BNCT) using epithermal neutron sources from reactors. The existing epithermal-neutron beams at the Brookhaven Medical Research Reactor Facility (BMRR), the Petten High Flux Reactor Facility (HWR) and the Finnish Research Reactor 1 (FIR1) have been analyzed and characterized using common analytical and measurement methods allowing for this inter-comparison. Each of these three facilities is unique and each offers an advantage in some aspect of BNCT, but none of these existing facilities excel in all neutron-beam attributes as related to BNCT. A comparison is therefore also shown for a near-optimum reactor beam which does not currently exist but which would be feasible with existing technology. This hypothetical beam is designated BNCT-1 and has a spectrum similar to the FIR-1, the mono-directionality of the HFR and the intensity of the BMRR. A beam very similar to the BNCT-1 could perhaps be achieved with modification of the BMRR, HFR, or FIR, and could certainly be realized in a new facility with today`s technology.
Date: October 1, 1997
Creator: Wheeler, F.J.; Nigg, D.W. & Capala, J.
Partner: UNT Libraries Government Documents Department

Reactor operations: Brookhaven Medical Research Reactor, Brookhaven High Flux Beam Reactor. Informal report, July 1995

Description: Part one of this report gives the operating history for the Brookhaven Medical Research Reactor for the month of July. Also included are the BMRR technical safety surveillance requirements record and the summary of BMRR irradiations for the month. Part two gives the operating histories for the Brookhaven High Flux Beam Reactor and the Cold Neutron Source Facility for the month of July. Also included are the HFBR technical safety surveillance requirements record and the summary of HFBR irradiations for the month.
Date: July 1, 1995
Partner: UNT Libraries Government Documents Department

Reactor operations informal report, October 1994

Description: This monthly progress report is divided into two parts. Part one covers the Brookhaven Medical Research Reactor and part two covers the Brookhaven High Flux Beam Reactor. Information is given for each reactor covering the following areas: reactor operation; instrumentation; mechanical maintenance; occurrence reports; and reactor safety.
Date: October 1, 1994
Creator: Hauptman, H.M.; Petro, J.N.; Jacobi, O.; Lettieri, V.; Holden, N.; Ports, D. et al.
Partner: UNT Libraries Government Documents Department

A neutronic feasibility study for LEU conversion of the Brookhaven Medical Research Reactor (BMRR).

Description: A neutronic feasibility study for converting the Brookhaven Medical Research Reactor from HEU to LEU fuel was performed at Argonne National Laboratory in cooperation with Brookhaven National Laboratory. Two possible LEU cores were identified that would provide nearly the same neutron flux and spectrum as the present HEU core at irradiation facilities that are used for Boron Neutron Capture Therapy and for animal research. One core has 17 and the other has 18 LEU MTR-type fuel assemblies with uranium densities of 2.5g U/cm{sup 3} or less in the fuel meat. This LEU fuel is fully-qualified for routine use. Thermal hydraulics and safety analyses need to be performed to complete the feasibility study.
Date: January 14, 1998
Creator: Hanan, N. A.
Partner: UNT Libraries Government Documents Department

Feasibility studies of LEU fuel conversion for the BMRR and HFBR.

Description: Feasibility studies have been performed to convert both the Brookhaven Medical Research Reactor (BMRR) and the High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory from the use of HEU (93%) fuel to the use of LEU (&lt;20%) fuel. The studies are intended to determine suitable LEU fuels that will provide fuel lifetime and neutron flux performance similar to the current HEU fuels. Both reactors use MTR-type fuel assemblies: the BMRR has 18 fuel plates with 140g {sup 235}U (0.43 gU/cm{sup 3}) and the HFBR has 20 plates, of which 18 are fuel with 351 g {sup 235}U (1.1 gU/cm{sup 3}).
Date: November 14, 1997
Creator: Hanan, N. A.; Matos, J. E. & Pond, R. B.
Partner: UNT Libraries Government Documents Department

Neutron Tube Design Study for Boron Neutron Capture TherapyApplication

Description: Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator application. By using a 5-cm-diameter RF-driven multicusp source H{sup +} yields over 95% have been achieved. These experimental findings will enable one to develop compact neutron generators based on the D-D or D-T fusion reactions. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without external pumping. Recent moderator design simulation studies have shown that 14 MeV neutrons could be moderated to therapeutically useful energy ranges for boron neutron capture therapy (BNCT). The dose near the center of the brain with optimized moderators is about 65% higher than the dose obtained from a typical neutron spectrum produced by the Brookhaven Medical Research Reactor (BMRR), and is comparable to the dose obtained by other accelerator-based neutron sources. With a 120 keV and 1 A deuteron beam, a treatment time of {approx}35 minutes is estimated for BNCT.
Date: January 4, 1998
Creator: Verbeke, J.M.; Lee, Y.; Leung, K.N.; Vujic, J.; Williams, M.D.; Wu, L.K. et al.
Partner: UNT Libraries Government Documents Department

Characterization of Dosimetry of the BMRR Horizontal Thimble Tubes and Broad Beam Facility.

Description: The Brookhaven Medical Research Reactor was a 5 mega-watt, light-water cooled and heavy-graphite moderated research facility. It has two shutter-equipped treatment rooms, three horizontally extended thimble tubes, and an ex-core broad beam facility. The three experimental thimbles, or activation ports, external to the reactor tank were designed for several uses, including the investigations on diagnostic and therapeutic methods using radioactive isotopes of very short half-life, the analysis of radiation exposure on tissue-equivalent materials using a collimated neutron beam, and the evaluation of dose effects on biological cells to improve medical treatment. At the broad beam facility where the distribution of thermal neutrons was essential uniform, a wide variety of mammalian whole-body exposures were studied using animals such as burros or mice. Also studied at the broad beam were whole-body phantom experiments, involving the use of a neutron or photon beam streaming through a screen to obtain the flux spectrum suitable for dose analysis on the sugar-urea-water mixture, a tissue-equivalent material. Calculations of the flux and the dose at beam ports based on Monte Carlo particle-transport code were performed, and measurements conducted at the same tally locations were made using bare or cadmium-covered gold foils. Analytical results, which show good agreement with measurement data, are presented in the paper.
Date: May 5, 2008
Creator: Hu,J.P.; Reciniello, R.N. & Holden, N.E.
Partner: UNT Libraries Government Documents Department

Accelerator Based Neutron Beams for Neutron Capture Therapy

Description: The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and compared the RBE characteristics of the MIT Reactor M67 clinical beam, The Brookhaven Medical Research Reactor clinical ...
Date: April 11, 2003
Creator: Yanch, Jacquelyn C.
Partner: UNT Libraries Government Documents Department

Technical aspects of boron neutron capture therapy at the BNL Medical Research Reactor

Description: The Brookhaven Medical Research Reactor, BMRR, is a 3 MW heterogeneous, tank-type, light water cooled and moderated, graphite reflected reactor, which was designed for biomedical studies. Early BNL work in Boron Neutron Capture Therapy (BNCT) used a beam of thermal neutrons for experimental treatment of brain tumors. Research elsewhere and at BNL indicated that higher energy neutrons would be required to treat deep seated brain tumors. Epithermal neutrons would be thermalized as they penetrated the brain and peak thermal neutron flux densities would occur at the depth of brain tumors. One of the two BMRR thermal port shutters was modified in 1988 to include plates of aluminum and aluminum oxide to provide an epithermal port. Lithium carbonate in polyethylene was added in 1991 around the bismuth port to reduce the neutron flux density coming from outside the port. To enhance the epithermal neutron flux density, the two vertical thimbles A-3 (core edge) and E-3 (in core) were replaced with fuel elements. There are now four fuel elements of 190 grams each and 28 fuel elements of 140 grams each for a total of 4.68 kg of {sup 235}U in the core. The authors have proposed replacing the epithermal shutter with a fission converter plate shutter. It is estimated that the new shutter would increase the epithermal neutron flux density by a factor of seven and the epithermal/fast neutron ratio by a factor of two. The modifications made to the BMRR in the past few years permit BNCT for brain tumors without the need to reflect scalp and bone flaps. Radiation workers are monitored via a TLD badge and a self-reading dosimeter during each experiment. An early concern was raised about whether workers would be subject to a significant dose rate from working with patients who have been irradiated. The gamma ...
Date: July 1, 1997
Creator: Holden, N.E.; Rorer, D.C.; Patti, F.J.; Liu, H.B.; Reciniello, R. & Chanana, A.D.
Partner: UNT Libraries Government Documents Department

OPTIMIZATION OF THE EPITHERMAL NEUTRON BEAM FOR BORON NEUTRON CAPTURE THERAPY AT THE BROOKHAVEN MEDICAL RESEARCH REACTOR.

Description: Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.
Date: August 18, 2002
Creator: HU,J.P.; RORER,D.C.; RECINIELLO,R.N. & HOLDEN,N.E.
Partner: UNT Libraries Government Documents Department

Leu conversion status of U.S. research reactors: September 1996

Description: At the request of the Department of Energy, the RERTR Program has summarized the conversion status of research and test reactors in the United States and has made estimates of the uranium densities that would be needed to convert the reactors with power levels greater than or equal to 1 MW from Highly Enriched Uranium (HEU) (greater than or equal to 20% U-235) to Lightly Enriched Uranium (LEU) (less than 20% U-235) fuels. Detailed conversion studies for each of the reactors need to be completed in order to establish the feasibility of using LEU fuels.
Date: September 1, 1996
Creator: Matos, J.E.
Partner: UNT Libraries Government Documents Department

RADIATION DOSIMETRY AT THE BNL HIGH FLUX BEAM REACTOR AND MEDICAL RESEARCH REACTOR.

Description: RADIATION DOSIMETRY MEASUREMENTS HAVE BEEN PERFORMED OVER A PERIOD OF MANY YEARS AT THE HIGH FLUX BEAM REACTOR (HFBR) AND THE MEDICAL RESEARCH REACTOR (BMRR) AT BROOKHAVEN NATIONAL LABORATORY TO PROVIDE INFORMATION ON THE ENERGY DISTRIBUTION OF THE NEUTRON FLUX, NEUTRON DOSE RATES, GAMMA-RAY FLUXES AND GAMMA-RAY DOSE RATES. THE MCNP PARTICLE TRANSPORT CODE PROVIDED MONTE CARLO RESULTS TO COMPARE WITH VARIOUS DOSIMETRY MEASUREMENTS PERFORMED AT THE EXPERIMENTAL PORTS, AT THE TREATMENT ROOMS AND IN THE THIMBLES AT BOTH HFBR AND BMRR.
Date: September 10, 1999
Creator: HOLDEN,N.E.
Partner: UNT Libraries Government Documents Department

Boron neutron capture therapy of ocular melanoma and intracranial glioma using p-boronophenylalanine

Description: During conventional radiotherapy, the dose that can be delivered to the tumor is limited by the tolerance of the surrounding normal tissue within the treatment volume. Boron Neutron Capture Therapy (BNCT) represents a promising modality for selective tumor irradiation. The key to effective BNCT is selective localization of {sup 10}B in the tumor. We have shown that the synthetic amino acid p-boronophenylalanine (BPA) will selectively deliver boron to melanomas and other tumors such as gliosarcomas and mammary carcinomas. Systemically delivered BPA may have general utility as a boron delivery agent for BNCT. In this paper, BNCT with BPA is used in treatment of experimentally induced gliosarcoma in rats and nonpigmented melanoma in rabbits. The tissue distribution of boron is described, as is response to the BNCT. 6 refs., 4 figs., 1 tab.
Date: January 1, 1990
Creator: Coderre, J.A.; Greenberg, D.; Micca, P.L.; Joel, D.D.; Saraf, S. (Brookhaven National Lab., Upton, NY (USA)) & Packer, S. (North Shore Univ. Hospital, Manhasset, NY (USA). Div. of Ophthalmology)
Partner: UNT Libraries Government Documents Department

Power Burst Facility/Boron Neutron Capture Therapy Program for cancer treatment

Description: This monthly bulletin describes activities in the following project areas during this reporting period: supporting technology development, large animal model studies, neutron source and facility preparation, administration and common support, and PBF operations. (FI)
Date: September 1, 1990
Creator: Ackermann, A.L. (ed.) & Dorn, R.V. III.
Partner: UNT Libraries Government Documents Department

Radiobiology of boron neutron capture therapy: Problems with the concept of relative biological effectiveness

Description: The radiation dose delivered to cells in vitro or vivo during boron neutron capture therapy (BNCT) is a mixture of photons, fast neutrons and heavy charged particles from the interaction of neutrons with nitrogen and born. The concept of relative biological effectiveness (RBE) had been developed to allow comparison of the effects of these radiations with the effects of standard photon treatments such as 250 kVp x-rays or {sup 60}Co gamma rays. The RBE value for all of these high linear energy transfer radiations can vary considerably depending upon the experimental conditions and endpoint utilized. The short range of the particles from the {sup 10}B(n,{alpha}) {sup 7}Li reaction make the precise subcellular location of the {sup 10}B atom of critical importance. The microscopic distribution of the {sup 10}B has a decided effect on the dosimetry. Monte Carlo simulations have shown that, at the cellular level, there is a profound difference in the probability of cell kill depending on the location of the {sup 10}B relative to the nucleus. Different boron-delivery agents will almost certainly have different distribution patterns at the subcellular level. The effect of BNCT with the amino acid p-boronophenylalanine (BPA) was compared with the effect of 250 kVp x-rays on a pigmented B16 melanoma subclone, both in vitro and in vivo. Generally accepted RBE values were applied to the relevant components of the Brookhaven Medical Research Reactor (BMRR) thermal neutron beam, however, there were still discrepancies when the resulting dose response curves were compared with the response to 250 kVp x-rays.
Date: January 1, 1990
Creator: Coderre, J.A. & Makar, M.S.
Partner: UNT Libraries Government Documents Department