566 Matching Results

Search Results

Advanced search parameters have been applied.

FY98 final report for the expedited technology demonstration project: demonstration test results for the integrated MSO waste treatment system

Description: Molten Salt Oxidation (MSO) is a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility in which an integrated pilot-scale MSO treatment system is being tested and demonstrated. The system consists of a MSO vessel with a dedicated off-gas treatment system, a salt recycle system, feed preparation equipment, and a ceramic final waste forms immobilization system. This integrated system was designed and engineered based on operational experience with an engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. The MSO/off-gas system has been operational since December 1997. The salt recycle system and the ceramic final forms immobilization became operational in May and August, 1998, respectively. We have tested the MSO facility with various organic feeds, including chlorinated solvents, tributyl phosphate/kerosene, PCB-contaminated waste oils & solvents, booties, plastic pellets, ion exchanged resins, activated carbon, radioactive-spiked organics, and well-characterized low-level liquid mixed wastes. MSO is shown to be a versatile technology for hazardous waste treatment and may be a solution to many waste disposal problems in DOE sites. This report presents the results obtained from operation of the integrated pilot-scale MSO treatment system through September 1998, and therefore represents a final report for fiscal year 1998 activities.
Date: November 1, 1998
Creator: Adamson, M G; Hipple, D L; Hopper, R W & Hsu, P C
Partner: UNT Libraries Government Documents Department

Expedited Technology Demonstration Project Baseline Revision 3.0

Description: The Expedited Technology Demonstration Project Plan, MWNT Revised Baseline 3.0, replaces and significantly modifies the current baseline. The revised plan will focus efforts specifically on the demonstration of an integrated Molten Salt Oxidation (MSO) system. In addition to the MSO primary unit, offgas, and salt recycle subsystems, the demonstrations will include the generation of robust final forms from process mineral residues. A simplified process flow chart for the expedited demonstration is shown. To minimize costs and to accelerate the schedule for deployment, the integrated system will be staged in an existing facility at LLNL equipped to handle hazardous and radioactive materials. The MSO systems will be activated in FY97, followed by the activation of final forms in FY98.
Date: October 1996
Creator: Adamson, M. G. & Densley, P. J.
Partner: UNT Libraries Government Documents Department

Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

Description: The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go/no-go goals stipulated by ...
Date: October 23, 2013
Creator: Reddy, Ramana G.
Partner: UNT Libraries Government Documents Department

Establishment of a room temperature molten salt capability to measure fundamental thermodynamic properties of actinide elements

Description: This is the final report of a six-month, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of this work was to establish a capability for the measurement of fundamental thermodynamic properties of actinide elements in room temperature molten salts. This capability will be used to study in detail the actinide chloro- and oxo-coordination chemistries that dominate in the chloride-based molten salt media. Uranium will be the first actinide element under investigation.
Date: December 31, 1998
Creator: Smith, W.H. & Costa, D.A.
Partner: UNT Libraries Government Documents Department

Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests

Description: Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.
Date: January 1, 1995
Creator: Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M. et al.
Partner: UNT Libraries Government Documents Department

Application of the electrometallurgical treatment technique to long-term disposition of DOE spent fuel

Description: The DOE inventory of spent nuclear fuel consists of approximately 2700 tonnes heavy metal (MTHM), containing over 100 different fuel types. The current plan for the disposition of this fuel is to condition it for dry storage until it can be placed in a geological repository. However, the variation in the physical condition and chemical composition of DOE spent fuel complicates the task of qualifying the fuel for repository disposal. Each type or category of fuel must be characterized and certified to meet repository disposal criteria, an expensive and time-consuming process. Some of the fuel types contain chemically reactive components (such as metallic sodium), which must be stabilized prior to long-term storage or disposal. Finally, some of the fuel is damaged or declad, and some has already been altered by its present storage environment, making it difficult to qualify that general type of fuel for disposal. The electrometallurgical (EM) treatment technique developed at Argonne National Laboratory (ANL) has the potential to convert many of these spent fuel types into a uniform set of three product streams (uranium metal, metal waste form, ceramic waste form). This treatment would simplify the process of preparing and qualifying these fuels for repository disposal. This paper reviews work done on evaluating the applicability of the EM technique to the treatment of the types of DOE spent fuels currently being stored at the Idaho National Engineering and Environmental Laboratory (INEEL).
Date: September 1, 1997
Creator: Karell, E.J.; Gourishankar, K.V. & McPheeters, C.C.
Partner: UNT Libraries Government Documents Department

Organic waste processing using molten salt oxidation

Description: Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.
Date: March 1, 1998
Creator: Adamson, M. G., LLNL
Partner: UNT Libraries Government Documents Department

Solar Two

Description: Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.
Date: April 1, 1998
Partner: UNT Libraries Government Documents Department

Molten salt oxidation for treating low-level mixed wastes

Description: MS0 is a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility (please see the photo attached) in which an integrated pilot-scale MS0 treatment system is being tested and demonstrated. The system consists of a MS0 vessel with a dedicated off-gas treatment system, a salt recycle system, feed preparation equipment, and a ceramic final waste forms immobilization system. The MSO/off-gas system has been operational since December 1997. The salt recycle system and the ceramic final forms immobilization became operational in May and August 1998, respectively. We have tested the MS0 facility with various organic feeds, including chlorinated solvents; tributyl phosphate/kerosene, PCB-contaminated waste oils & solvents, booties, plastic pellets, ion exchange resins, activated carbon, radioactive-spiked organics, and well-characterized low- level liquid mixed wastes. MS0 is a versatile technology for hazardous waste treatment and may be a solution to many waste disposal problems. In this paper we will present our operational experience with MS0 and also discuss its process capabilities as well as performance data with different feeds.
Date: December 10, 1998
Creator: Adamson, M G; Ford, T D; Foster, K G; Hipple, D L; Hopper, R W & Hsu, P C
Partner: UNT Libraries Government Documents Department

Evaluation of the Molten Salt Reactor Experiment drain tanks for reuse in salt disposal, Oak Ridge National Laboratory, Oak Ridge, Tennessee

Description: This report was prepared to identify the source documentation used to evaluate the drain tanks in the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). The evaluation considered the original quality of the tanks, their service history, and their intended use during the removal of fluoride salts. It also includes recommendations for a quality verification plan. The estimates of corrosion damage to the salt containing system at the MSRE are low enough to lend optimism that the system will be fit for its intended use, which is disposal of the salt by transferring it to transport containers. The expected corrosion to date is estimated between 10 and 50 mil, or 2 to 10% of the shell wall. The expected corrosion rate when the tanks are used to remove the salt at 110 F is estimated to be .025 to 0.1 mil per hour of exposure to HF and molten salt. To provide additional assurance that the estimates of corrosion damage are accurate, cost effective nondestructive examination (NDE) has been recommended. The NDE procedures are compared with industry standards and give a perspective for the extent of additional measures taken in the recommendation. A methodology for establishing the remaining life has been recommended, and work is progressing towards providing an engineering evaluation based upon thickness and design conditions for the future use of the tanks. These extra measures and the code based analysis will serve to define the risk of salt or radioactive gases leaking during processing and transfer of the salt as acceptable.
Date: May 1, 1998
Partner: UNT Libraries Government Documents Department

Solar power towers

Description: The high desert near Barstow, California, has witnessed the development of this country's first two solar power towers. Solar One operated successfully from 1982 to 1988 and proved that power towers work efficiently to produce utility-scale power from sunlight. Solar Two was connected to the utility grid in 1996 and is operating today. Like its predecessor, Solar Two is rated at 10 megawatts. An upgrade of the Solar One plant, Solar Two demonstrates how solar energy can be stored in the form of heat in molten salt for power generation on demand. The experience gained with these two pilot power towers has established a foundation on which industry can develop its first commercial plants. These systems produce electricity on a large scale. They are unique among solar technologies because they can store energy efficiently and cost effectively. They can operate whenever the customer needs power, even after dark or during cloudy weather.
Date: April 1, 1998
Partner: UNT Libraries Government Documents Department

Today`s Solar Power Towers

Description: This [updated 1/95] report outlines the technology of modern solar central receiver power plants, showing how they could be an important domestic source of energy within the next decade
Date: January 1, 1995
Partner: UNT Libraries Government Documents Department

Solar Two: A successful power tower demonstration project

Description: Solar Two, a 10MWe power tower plant in Barstow, California, successfully demonstrated the production of grid electricity at utility-scale with a molten-salt solar power tower. This paper provides an overview of the project, from inception in 1993 to closure in the spring of 1999. Included are discussions of the goals of the Solar Two consortium, the planned-vs.-actual timeline, plant performance, problems encountered, and highlights and successes of the project. The paper concludes with a number of key results of the Solar Two test and evaluation program.
Date: March 2, 2000
Creator: REILLY,HUGH E. & PACHECO,JAMES E.
Partner: UNT Libraries Government Documents Department

Detection and removal of molten salts from molten aluminum alloys

Description: Molten salts are one source of inclusions and defects in aluminum ingots and cast shapes. A selective adsorption media was used to remove these inclusions and a device for detection of molten salts was tested. This set of experiments is described and the results are presented and analyzed.
Date: August 2, 1999
Creator: Butcher, K.; Smith, D.; Lin, C. L. & Aubrey, L.
Partner: UNT Libraries Government Documents Department

MSO spent salt clean-up recovery process

Description: An effective process has been developed to separate metals, mineral residues, and radionuclides from spent salt, a secondary waste generated by Molten Salt Oxidation (MSO). This process includes salt dissolution, pH adjustment, chemical reduction and/or sulfiding, filtration, ion exchange, and drying. The process uses dithionite to reduce soluble chromate and/or sulfiding agent to suppress solubilities of metal compounds in water. This process is capable of reducing the secondary waste to less than 5% of its original weight. It is a low temperature, aqueous process and has been demonstrated in the laboratory [1].
Date: February 1, 1997
Creator: Adamson, M G; Brummond, W A; Hipple, D L; Hsu, P C; Summers, L J; Von Holtz, E H et al.
Partner: UNT Libraries Government Documents Department

Deformation study of separator pellets for thermal batteries

Description: The deformation characteristics of pellets of electrolyte-binder (EB) mixes based on MgO were measured under simulated, thermal-battery conditions. Measurements (using a statistically designed experimental strategy) were made as a function of applied pressure, temperature, and percentage of theoretical density for four molten-salt electrolytes at two levels of MgO. The EB mixes are used as separators in Li-alloy thermal batteries. The electrolytes included LiCl-KCI eutectic, LiCl-LiBr-KBr eutectic, LiBr-KBr-LiF eutectic, and a LiCl-LiBr-LiF electrolyte with a minimum-melting composition. The melting points ranged from 313 C to 436 C. The experimental data were used to develop statistical models that approximate the deformation behavior of pellets of the various EB mixes over the range of experimental conditions we examined. This report, discusses the importance of the deformation response surfaces to thermal-battery design.
Date: May 1, 1995
Creator: Guidotti, R.A.; Reinhardt, F.W. & Thomas, E.V.
Partner: UNT Libraries Government Documents Department

A theory for correlating the thermodynamic and structural properties of molten silicate solutions

Description: A theory of molten silicates is presented which takes into account the dependence of the free energy of cutting Si-O-Si bridging bonds on local structures of the two silicons in the bond. Resultant equations describe the thermodynamic properties of primary silicate solutions containing a mixture of bridges and cut bridges, and should ultimately provide a realistic measure of the distribution of silicon species which have i cut bridges (i = 1,2,3,4) from analyses of thermodynamic data.
Date: June 1, 1995
Creator: Blander, M. & Bloom, I.
Partner: UNT Libraries Government Documents Department

An Evaluation of Molten-Salt Power Towers Including Results of the Solar Two Project

Description: This report utilizes the results of the Solar Two project, as well as continuing technology development, to update the technical and economic status of molten-salt power towers. The report starts with an overview of power tower technology, including the progression from Solar One to the Solar Two project. This discussion is followed by a review of the Solar Two project--what was planned, what actually occurred, what was learned, and what was accomplished. The third section presents preliminary information regarding the likely configuration of the next molten-salt power tower plant. This section draws on Solar Two experience as well as results of continuing power tower development efforts conducted jointly by industry and Sandia National Laboratories. The fourth section details the expected performance and cost goals for the first commercial molten-salt power tower plant and includes a comparison of the commercial performance goals to the actual performance at Solar One and Solar Two. The final section summarizes the successes of Solar Two and the current technology development activities. The data collected from the Solar Two project suggest that the electricity cost goals established for power towers are reasonable and can be achieved with some simple design improvements.
Date: November 1, 2001
Creator: REILLY, HUGH E. & KOLB, GREGORY J.
Partner: UNT Libraries Government Documents Department