3 Matching Results

Search Results

Advanced search parameters have been applied.

Terahertz time-domain spectroscopy of atmospheric water vapor from 0.4 to 2.7 THz.

Description: We conducted broadband absorption measurements of atmospheric water vapor in the ground state, X {sup 1}A{sub 1} (000), from 0.4 to 2.7 THz with a pressure broadening-limited resolution of 6.2 GHz using pulsed, terahertz time-domain spectroscopy (THz-TDS). We measured a total of seventy-two absorption lines and forty-nine lines were identified as H{sub 2}{sup 16}O resonances. All the H{sub 2}{sup 16}O lines identified were confirmed by comparing their center frequencies to experimental values available in the literature.
Date: October 1, 2005
Creator: Allman, Ronald E. & Foltynowicz, Robert J.
Partner: UNT Libraries Government Documents Department

Gas-Phase Molecular Dynamics: Theoretical Studies In Spectroscopy and Chemical Dynamics

Description: The main goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods, and extends them to understand some important properties of materials in condensed phases and interstellar medium as well as in combustion environments.
Date: May 29, 2012
Creator: G., Yu H. & Muckerman, J.T.
Partner: UNT Libraries Government Documents Department

Development and integration of Raman imaging capabilities to Sandia National Laboratories hyperspectral fluorescence imaging instrument.

Description: Raman spectroscopic imaging is a powerful technique for visualizing chemical differences within a variety of samples based on the interaction of a substance's molecular vibrations with laser light. While Raman imaging can provide a unique view of samples such as residual stress within silicon devices, chemical degradation, material aging, and sample heterogeneity, the Raman scattering process is often weak and thus requires very sensitive collection optics and detectors. Many commercial instruments (including ones owned here at Sandia National Laboratories) generate Raman images by raster scanning a point focused laser beam across a sample--a process which can expose a sample to extreme levels of laser light and requires lengthy acquisition times. Our previous research efforts have led to the development of a state-of-the-art two-dimensional hyperspectral imager for fluorescence imaging applications such as microarray scanning. This report details the design, integration, and characterization of a line-scan Raman imaging module added to this efficient hyperspectral fluorescence microscope. The original hyperspectral fluorescence instrument serves as the framework for excitation and sample manipulation for the Raman imaging system, while a more appropriate axial transmissive Raman imaging spectrometer and detector are utilized for collection of the Raman scatter. The result is a unique and flexible dual-modality fluorescence and Raman imaging system capable of high-speed imaging at high spatial and spectral resolutions. Care was taken throughout the design and integration process not to hinder any of the fluorescence imaging capabilities. For example, an operator can switch between the fluorescence and Raman modalities without need for extensive optical realignment. The instrument performance has been characterized and sample data is presented.
Date: November 1, 2005
Creator: Timlin, Jerilyn Ann & Nieman, Linda T.
Partner: UNT Libraries Government Documents Department