115 Matching Results

Search Results

Advanced search parameters have been applied.

Utilization and Stabilization of Mineral Wastes

Description: From Abstract: "This report summarizes laboratory research conducted by the Bureau and cooperative field studies made with the mineral industry to reduce the environmental impacts of air and water pollution deriving from mineral wastes."
Date: 1986
Creator: Dean, K. C.; Frolsland, L. J. & Shirts, M. B.
Partner: UNT Libraries Government Documents Department

Risk analyses for disposing of nonhazardous oil field wastes in salt caverns

Description: Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed of in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing the contaminants` toxicities; estimating contaminant intakes; and, finally, calculating human cancer and noncancer risks. Potential human health risks associated with hazardous substances (arsenic, benzene, cadmium, and chromium) in NOW were assessed under four postclosure cavern release scenarios: inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks or leaky interbeds, and a partial collapse of the cavern roof. To estimate potential human health risks for these scenarios, contaminant concentrations at the receptor were calculated using a one-dimensional solution to an advection/dispersion equation that included first order degradation. Even under worst-case conditions, the risks have been found to be within the US EPA target range for acceptable exposure levels. From a human health risk perspective, salt caverns can provide an acceptable disposal method for NOW.
Date: September 1, 1997
Creator: Tomasko, D.; Elcock, D. & Veil, J.
Partner: UNT Libraries Government Documents Department

Corrective Action Investigation Plan for Corrective Action Unit 309: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 0

Description: This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 309, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD). Corrective Action Unit 309 is located in Area 12 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 mi beyond the main gate to the NTS. Corrective Action Unit 309 is comprised of the three Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: CAS 12-06-09, Muckpile; CAS 12-08-02, Contaminated Waste Dump (CWD); and CAS 12-28-01, I, J, and K-Tunnel Debris. Corrective Action Sites 12-06-09 and 12-08-02 will be collectively referred to as muckpiles in this document. Corrective Action Site 12-28-01 will be referred to as the fallout plume because of the extensive lateral area of debris and fallout contamination resulting from the containment failures of the J-and K-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and media sampling, where appropriate. Data will also be obtained to support waste management decisions. The CASs in CAU 309 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and/or the environment. Existing information on the nature and extent of potential contamination at these sites are insufficient to evaluate and recommend corrective action alternatives for the CASs. Therefore, additional information will be obtained by conducting a CAI prior to evaluating corrective action alternatives and selecting the appropriate ...
Date: December 1, 2004
Creator: Strand, David A.
Partner: UNT Libraries Government Documents Department

Corrective Action Investigation Plan for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No. 0

Description: This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 551, Area 12 muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 551 is located in Area 12 of the NTS, which is approximately 110 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 miles beyond the main gate to the NTS. Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: (1) 12-01-09, Aboveground Storage Tank and Stain; (2) 12-06-05, Muckpile; (3) 12-06-07, Muckpile; and (4) 12-06-08, Muckpile. Corrective Action Site 12-01-09 is located in Area 12 and consists of an above ground storage tank (AST) and associated stain. Corrective Action Site 12-06-05 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. Corrective Action Site 12-06-07 is located in Area 12 and consists of a muckpile associated with the U12 C-, D-, and F-Tunnels. Corrective Action Site 12-06-08 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. In keeping with common convention, the U12B-, C-, D-, and F-Tunnels will be referred to as the B-, C-, D-, and F-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions.
Date: June 1, 2004
Creator: Boehlecke, Robert F.
Partner: UNT Libraries Government Documents Department

Corrective Action Decision Document/Closure Report for Corrective Action Unit 309: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 0 with Errata Sheet

Description: This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 309, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada. The corrective actions proposed in this document are according to the ''Federal Facility Agreement and Consent Order'' (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 309 is comprised of the three Corrective Action Sites (CASs) (Figure 1-1) listed below: (1) CAS 12-06-09, Muckpile; (2) CAS 12-08-02, Contaminated Waste Dump (CWD); and (3) CAS 12-28-01, I-, J-, and K-Tunnel Debris. Corrective Action Sites 12-06-09 and 12-08-02 will be collectively referred to as muckpiles in this document. Corrective Action Site 12-28-01 will be referred to as the fallout plume because of the extensive lateral area of debris and fallout contamination resulting from the containment failures of the J- and K-Tunnels. A detailed discussion of the history of this CAU is presented in the ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 309: Area 12 Muckpiles, Nevada Test Site (NTS), Nevada.'' (NNSA/NSO, 2004). This CADD/CR provides justification for the closure of CAU 309 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted according to the CAIP (NNSA/NSO, 2004), which provides information relating to the history, planning, and scope of the investigation. Therefore, this information will not be repeated in this CADD/CR.
Date: December 1, 2005
Creator: Wickline, Alfred
Partner: UNT Libraries Government Documents Department

Corrective Action Decision Document/Closure Report for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada, Rev. No.: 0 with Errata Sheet

Description: This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 552, Area 12 Muckpile and Ponds, Nevada Test Site (NTS), Nevada. The corrective actions proposed in this document are in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 552 is comprised of the corrective action site (CAS) that is shown on Figure 1-2 and listed below: 12-23-05, Ponds. The ponds were originally constructed to catch runoff from the muckpile. As the muckpile continued to be extended to the north and to the east, it became impossible to ensure that all of the runoff from the muckpile was funneled into the pond. Some of the runoff from the muckpile continues to be caught in the upper pond, but portions of the muckpile have eroded, diverting much of the runoff away from the ponds. Regarding the other ponds, there is no evidence that any of the overflow ponds ever received runoff from overflow of the upper pond. The muckpile was removed from CAU 552 because an active leachfield exists within the muckpile and there are current activities at G-Tunnel. A detailed discussion of the history of this CAU is presented in the ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada'', Rev. 1 (NNSA/NSO, 2005). Corrective Action Unit 552, Area 12 Muckpile and Ponds, consists of one site located in the southern portion of Area 12. Corrective Action Site 12-23-05 consists of dry ponds adjacent to the G-Tunnel muckpile. The ponds were used to contain ...
Date: September 1, 2005
Creator: Pastor, Laura
Partner: UNT Libraries Government Documents Department

Corrective Action Decision Document/Closure Report for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 1

Description: This Corrective Action Decision Document (CADD)/Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 551, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada. The corrective actions proposed in this document are in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) that are shown on Figure 1-2 and listed below: CAS 12-01-09, Aboveground Storage Tank and Stain; CAS 12-06-05, U-12b Muckpile; CAS 12-06-07, Muckpile; and CAS 12-06-08, Muckpile. A detailed discussion of the history of this CAU is presented in the ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 551: Area 12 Muckpiles'' (NNSA/NSO, 2004). This CADD/CR provides justification for the closure of CAU 551 in place with administrative controls. This justification is based upon process knowledge and the results of the investigative activities conducted in accordance with the CAIP (NNSA/NSO, 2004). The CAIP provides information relating to the history, planning, and scope of the investigation; therefore, this information will not be repeated in the CADD/CR. Corrective Action Unit 551, Area 12 Muckpiles, consists of four inactive sites located in the southwestern portion of Area 12. The four CAU 551 sites consist of three muckpiles, and an aboveground storage tank (AST) and stain. The CAU 551 sites were all used during underground nuclear testing at the B-, C-, D- and F-Tunnels in the late 1950s and early 1960s and have mostly remained inactive since that period.
Date: November 1, 2006
Creator: Wickline, Alfred
Partner: UNT Libraries Government Documents Department

Restored Drill Cuttings for Wetlands Creation: Results of Mesocosm Approach to Emulate Field Conditions Under Varying Salinity and Hydrologic Conditions

Description: This study builds upon earlier research conducted by Southeastern Louisiana University concerning the efficacy of utilizing processed drill cuttings as an alternative substrate source for wetland rehabilitation (wetland creation and restoration). Previous research has indicated that processed drill cuttings exhibit a low degree of contaminant migration from the process drill cuttings to interstitial water and low toxicity, as tested by seven-day mysid shrimp chronic toxicity trials.
Date: February 21, 2001
Creator: Hester, Mark W.; Shaffer, Gary P.; M., Willis Jonathan & DesRoches, Dennis J.
Partner: UNT Libraries Government Documents Department

Update on onshore disposal of offshore drilling wastes

Description: The US Environmental Protection Agency (EPA) is developing effluent limitations guidelines to govern discharges of cuttings from wells drilled using synthetic-based muds. To support this rulemaking, Argonne National Laboratory was asked by EPA and the US Department of Energy (DOE) to collect current information about those onshore commercial disposal facilities that are permitted to receive offshore drilling wastes. Argonne contacted state officials in Louisiana, Texas, California and Alaska to obtain this information. The findings, collected during October and November 1999, are presented by state.
Date: November 29, 1999
Creator: Veil, J. A.
Partner: UNT Libraries Government Documents Department

Analytical model for radial injection of NORM with a step-function source

Description: This paper presents information on a model used to analyze the underground injection of wastes containing naturally occurring radioactive material (NORM). This model uses a step-function contaminant source, which models intermittent NORM injection in a continuous brine injection well. The governing equations are presented and transformed into Laplace space, where the equations are solved. The numerical inversion of this solution is detailed. The model is cast in a nondimensional form such that a single model solution is valid for a large number of different field conditions. This paper also presents a case study that compares this analytical model to a simple mixing model for a field demonstration site in west Texas. This case study showed that at distances of more than 100 meters from the injection well, calculated subsurface NORM activities were lower than proposed US Environmental Protection Agency drinking water standards. The comparison also shows that the simple mixing model overpredicts activity levels close to the injection well and underpredicts activities further from the well.
Date: December 31, 1997
Creator: Williams, G.P.; Tomasko, D.; Smith, K. & Blunt, D.
Partner: UNT Libraries Government Documents Department

CORRECTIVE ACTION DECISION DOCUMENT FOR CORRECTIVE ACTION UNIT 383: AREA 12 E-TUNNEL SITES, NEVADA TEST SITE, REV. NO. 0

Description: This Corrective Action Decision Document (CADD) was prepared by the Defense Threat Reduction Agency (DTRA) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The recommendations and corrective actions described within this document apply to the future closure of Corrective Action Unit (CAU) 383, Area 12 E-Tunnel Sites, which is a joint DTRA and NNSA/NSO site. The CAU consists of three (3) Corrective Action Sites (CASs): CAS 12-06-06 (Muckpile); CAS 12-25-02 (Oil Spill); and CAS 12-28-02 (Radioactive Material). In addition to these CASs, E-Tunnel Ponds One, Two, and Three, and the Drainage Area above the ponds were included since closure of the Muckpile will impact these areas. This CADD is consistent with the requirements of the ''Federal Facility Agreement and Consent Order'' agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The DTRA point of contact is the Nevada Operations Office, Environmental Project Manager; currently Ms. Tiffany A. Lantow. The NNSA/NSO point of contact is the Environmental Restoration, Industrial Sites Project Manager; currently Ms. Janet Appenzeller-Wing. The purpose of this CADD is to identify and provide the rationale for the selection of a recommended corrective action alternative for CAU 383. This document presents the recommended corrective action for CAU 383 (E-Tunnel Sites); however, implementation may be affected by the corrective action (to be determined) for CAU 551 (Area 12 Muckpiles) due to the close proximity of B, C, D, and F-Tunnels. The scope of this CADD consists of the following tasks: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria; and (5) Recommend and justify a preferred ...
Date: March 1, 2005
Creator: McLane, Mark
Partner: UNT Libraries Government Documents Department

Corrective Action Investigation Plan for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 0

Description: This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 551, Area 12 muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 551 is located in Area 12 of the NTS, which is approximately 110 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 miles beyond the main gate to the NTS. Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: (1) 12-01-09, Aboveground Storage Tank and Stain; (2) 12-06-05, Muckpile; (3) 12-06-07, Muckpile; and (4) 12-06-08, Muckpile. Corrective Action Site 12-01-09 is located in Area 12 and consists of an above ground storage tank (AST) and associated stain. Corrective Action Site 12-06-05 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. Corrective Action Site 12-06-07 is located in Area 12 and consists of a muckpile associated with the U12 C-, D-, and F-Tunnels. Corrective Action Site 12-06-08 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. In keeping with common convention, the U12B-, C-, D-, and F-Tunnels will be referred to as the B-, C-, D-, and F-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions.
Date: June 1, 2004
Creator: Strand, David A.
Partner: UNT Libraries Government Documents Department

Corrective Action Investigation Plan for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada, Rev. 1

Description: Corrective Action Unit 552 is being investigated because man-made radionuclides and chemical contaminants may be present in concentrations that could potentially pose an unacceptable risk to human health and/or the environment. The CAI will be conducted following the data quality objectives (DQOs) developed by representatives of the Nevada Division of Environmental Protection (NDEP) and the DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The DQOs are used to identify the type, amount, and quality of data needed to define the nature and extent of contamination and identify and evaluate the most appropriate corrective action alternatives for CAU 552. The primary problem statement for the investigation is: ''Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for CAS 12-23-05.'' To address this problem statement, the resolution of the following two decision statements is required: (1) The Decision I statement is: ''Is a contaminant present within the CAU at a concentration that could pose an unacceptable risk to human health and the environment?'' Any site-related contaminant detected at a concentration exceeding the corresponding preliminary action level (PAL), as defined in Section A.1.4.2, will be considered a contaminant of concern (COC). A COC is defined as a site-related constituent that exceeds the screening criteria (PAL). The presence of a contaminant within each CAS is defined as the analytical detection of a COC. (2) The Decision II statement is: ''Determine the extent of contamination identified above PALs.'' This decision will be achieved by the collection of data that are adequate to define the extent of COCs. Decision II samples are used to determine the lateral and vertical extent of the contamination as well as the likelihood of COCs to migrate outside of the site boundaries. The migration pattern can be derived from the ...
Date: January 1, 2005
Creator: Boehlecke, Robert F.
Partner: UNT Libraries Government Documents Department

USING THE SULFUR POLYMER STABILIZATION SOLIDIFICATION PROCESS TO TREAT RESIDUAL MERCURY WASTES FROM GOLD MINING OPERATIONS.

Description: Large quantities of mercury are generated as a by-product during the processing of gold ore following mining operations. Newmont Mining Corporation (NMC), which operates some of the world's largest gold mines, sought a method to permanently ''retire'' its mercury by-products, thereby avoiding potential environmental liability. Sulfur Polymer Stabilization-Solidification (SPSS) is an innovative technology developed at Brookhaven National Laboratory (BNL) for treatment of mercury and mercury contaminated materials, such as soil, sludge and debris. BNL conducted a treatability study to determine the potential applicability of SPSS for treatment of Newmont mercury, and the treated product passed the U.S. Environmental Protection Agency (EPA) test for toxicity. The SPSS process has been shown to be effective on radioactive and nonradioactive mercury and mercury-contaminated materials with a pilot-scale batch system capable of producing 0.03 m{sup 3} (1 ft{sup 3}) per batch. Engineering scale-up issues are discussed and material property tests addressing these issues are described.
Date: February 24, 2003
Creator: BOWERMAN,B. ADAMS,J. KALB,P. WAN,R. Y. LEVIER,M.
Partner: UNT Libraries Government Documents Department

Using Helicopter Electromagnetic Surveys to Identify Potential Hazards at Mine Waste Impoundments

Description: In July 2003, helicopter electromagnetic surveys were conducted at 14 coal waste impoundments in southern West Virginia. The purpose of the surveys was to detect conditions that could lead to impoundment failure either by structural failure of the embankment or by the flooding of adjacent or underlying mine works. Specifically, the surveys attempted to: 1) identify saturated zones within the mine waste, 2) delineate filtrate flow paths through the embankment or into adjacent strata and receiving streams, and 3) identify flooded mine workings underlying or adjacent to the waste impoundment. Data from the helicopter surveys were processed to generate conductivity/depth images. Conductivity/depth images were then spatially linked to georeferenced air photos or topographic maps for interpretation. Conductivity/depth images were found to provide a snapshot of the hydrologic conditions that exist within the impoundment. This information can be used to predict potential areas of failure within the embankment because of its ability to image the phreatic zone. Also, the electromagnetic survey can identify areas of unconsolidated slurry in the decant basin and beneath the embankment. Although shallow, flooded mineworks beneath the impoundment were identified by this survey, it cannot be assumed that electromagnetic surveys can detect all underlying mines. A preliminary evaluation of the data implies that helicopter electromagnetic surveys can provide a better understanding of the phreatic zone than the piezometer arrays that are typically used.
Date: January 1, 2008
Creator: Hammack, R.W.
Partner: UNT Libraries Government Documents Department

Regulatory Initiatives for Control and Release of Technologically Enhanced Naturally-Occurring Radioactive Materials

Description: Current drafts of proposed standards and suggested State regulations for control and release of technologically-enhanced naturally-occurring radioactive material (TENORM), and standards for release of volumetrically-contaminated material in the US are reviewed. These are compared to the recommendations of the International Atomic Energy Association (IAEA) Safety Series and the European Commission (EC) proposals. Past regulatory efforts with respect to TENORM in the US dealt primarily with oil-field related wastes. Currently, nine states (AK, GA, LA, MS, NM, OH, OR SC, TX) have specific regulations pertaining to TENORM, mostly based on uranium mill tailings cleanup criteria. The new US proposals are dose- or risk-based, as are the IAEA and EC recommendations, and are grounded in the linear no threshold hypothesis (LNT). TENORM wastes involve extremely large volumes, particularly scrap metal and mine wastes. Costs to control and dispose of these wastes can be considerable. The current debate over the validity of LNT at low doses and low dose rates is particularly germane to this discussion. Most standards setting organizations and regulatory agencies base their recommendations on the LNT. The US Environmental Protection Agency has released a draft Federal Guidance Report that recommends calculating health risks from low-level exposure to radionuclides based on the LNT. However, some scientific and professional organizations are openly questioning the validity of LNT and its basis for regulations, practices, and costs to society in general. It is not clear at this time how a non-linear regulatory scheme would be implemented.
Date: March 2, 1999
Creator: Egidi, P.V.
Partner: UNT Libraries Government Documents Department

Beneficial Use of Drilling Waste - A Wetland Restoration Technology

Description: This project demonstrated that treated drill cuttings derived from oil and gas operations could be used as source material for rebuilding eroding wetlands in Louisiana. Planning to supply a restoration site, drill a source well, and provide part of the funding. Scientists from southeastern Louisiana University's (SLU) Wetland Biology Department were contracted to conduct the proposed field research and to perform mesocosm studies on the SLU campus. Plans were to use and abandoned open water drill slip as a restoration site. Dredged material was to be used to create berms to form an isolated cell that would then be filled with a blend of dredged material and drill cuttings. Three elevations were used to test the substrates ability to support various alternative types of marsh vegetation, i.e., submergent, emergent, and upland. The drill cuttings were not raw cuttings, but were treated by either a dewatering process (performed by Cameron, Inc.) or by a stabilization process to encapsulate undesirable constituents (performed by SWACO, Division of Smith International).
Date: August 14, 2000
Creator: Resources, Pioneer Natural
Partner: UNT Libraries Government Documents Department

Disposal of NORM waste in salt caverns

Description: Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.
Date: July 1, 1998
Creator: Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D. & Williams, G.P.
Partner: UNT Libraries Government Documents Department

Development of Improved Oil Field Waste Injection Disposal Techniques

Description: The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.
Date: December 17, 2001
Creator: Inc., Terralog Technologies USA
Partner: UNT Libraries Government Documents Department

An Investigation for Disposal of Drill Cuttings into Unconsolidated Sandstones and Clayey Sands

Description: This project include experimental data and a set of models for relating elastic moduli/porosity/texture and static-to-dynamic moduli to strength and failure relationships for unconsolidated sands and clayey sands. The results of the project should provide the industry with a basis for wider use of oil base drilling fluids in water sensitive formations by implementing drill cutting injection into existing wells at abandoned formations and controlling fracture geometry to prevent ground water contamination.
Date: September 11, 2000
Creator: Mese, Ali; Dvorkin, Jack & Shillinglaw, John
Partner: UNT Libraries Government Documents Department

Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs

Description: Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.
Date: October 1, 1997
Creator: Veil, J.A.
Partner: UNT Libraries Government Documents Department

Issues related to setting exemption levels for oil and gas NORM

Description: In the absence of any federal regulations that specifically address the handling and disposal of wastes containing naturally occurring radioactive material (NORM), individual states have taken responsibility for developing their own regulatory programs for NORM. A key issue in developing NORM rules is defining exemption levels--specific levels or concentrations that determine which waste materials are subject to controlled management. In general, states have drawn upon existing standards and guidelines for similar waste types in establishing exemption levels for NORM. Simply adopting these standards may not be appropriate for oil and gas NORM for several reasons. The Interstate Oil and Gas Compact Commission's NORM Subcommittee has summarized the issues involved in setting exemption levels in a report titled ``Naturally Occurring Radioactive Materials (NORM): Issues from the Oil and Gas Point of View''. The committee has also recommended a set of exemption levels for controlled practices and for remediation activities on the basis of the issues discussed.
Date: November 12, 1999
Creator: Blunt, D. L.; Gooden, D. S. & Smith, K. P.
Partner: UNT Libraries Government Documents Department

Disposal of NORM-contaminated oil field wastes in salt caverns -- Legality, technical feasibility, economics, and risk

Description: Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approaching cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.
Date: July 1, 1998
Creator: Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D. & Williams, G.P.
Partner: UNT Libraries Government Documents Department

Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

Description: According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.
Date: September 1, 1997
Creator: Veil, J.A.
Partner: UNT Libraries Government Documents Department