94 Matching Results

Search Results

Advanced search parameters have been applied.

Long-term seismic monitoring of the Roosevelt - Cove Fort KGRA's

Description: Earthquake monitoring of the Roosevelt-Cove Fort Hot Springs KGRA's was implemented by installation of three RF telemetered, vertical component, seismograph stations: CFU, MNU and RHU. These station sites were selected on the basis of proximity to the KGRA's, with respect to known earthquake activity determined in the microearthquake surveys. The three permanent stations form the basic long-term monitoring capability of the Roosevelt-Cove Fort KGRA's. The signals are FM transmitted to a collecting site near Milford then they are telephone-transmitted to the University of Utah campus for recording. The limitations of only three-stations precludes accurate hypocenter determinations but allows detection to a minimum threshold of about M-0.5 for close-in events. Locations can be determined for earthquakes of about M-0.7 or greater. Regional coverage of the south-central Utah KGRA's is supplemented by the use of other existing University of Utah stations to the east: MSU, PUU, and RFU. Together the six stations allow long-term detection of this geothermally active region.
Date: December 1, 1977
Creator: Smith, Robert B.
Partner: UNT Libraries Government Documents Department

Mapping Diffuse Seismicity Using Empirical Matched Field Processing Techniques

Description: The objective of this project is to detect and locate more microearthquakes using the empirical matched field processing (MFP) method than can be detected using only conventional earthquake detection techniques. We propose that empirical MFP can complement existing catalogs and techniques. We test our method on continuous seismic data collected at the Salton Sea Geothermal Field during November 2009 and January 2010. In the Southern California Earthquake Data Center (SCEDC) earthquake catalog, 619 events were identified in our study area during this time frame and our MFP technique identified 1094 events. Therefore, we believe that the empirical MFP method combined with conventional methods significantly improves the network detection ability in an efficient matter.
Date: January 21, 2011
Creator: Wang, J; Templeton, D C & Harris, D B
Partner: UNT Libraries Government Documents Department

Seismological Investigations at the Geysers Geothermal Field

Description: Two short (4 and 6 days) recording periods at The Geysers geothermal field provided useful data on two large refraction explosions and numerous microearthquakes. The vapor-dominated reservoir appears to be characterized by regionally anomalous high P- and S-wave velocities and low attenuation, but the anomaly seems to decrease, possibly reversing, with depth. Microearthquakes occur in a diffuse pattern, with no indication of dominant throughgoing faults and an absence of activity in the main production zone. Mechanisms are generally consistent with NE-SW compression. Occurrence rates indicate a slightly high incidence of smaller magnitude shocks. It is possible that the microearthquake activity is related to an expanding steam zone. While the present anomalies appear to delineate the reservoir, it is not certain that they would have been detectable in an exploration mode, prior to large-scale exploitation of the field.
Date: December 1, 1977
Creator: Majer, E. L. & McEvilly, T.V
Partner: UNT Libraries Government Documents Department

INL Seismic Monitoring Annual Report: January 1, 2007 - December 31, 2007

Description: During 2007, the INL Seismic Monitoring Program evaluated 2,515 earthquakes from around the world, the western United States, and local region of the eastern Snake River Plain. 671 earthquakes and man-made blasts occurred within the local region outside and within a 161-km (or 100-mile) radius of INL. Of these events, eleven were small to moderate size earthquakes ranging in magnitude from 3.0 to 4.8. 341 earthquakes occurred within the 161-km radius of INL and the majority of these earthquakes were located in active regions of the Basin and Range Province that surrounds the ESRP. Three earthquakes were located within the ESRP at Craters of the Moon National Monument. The earthquakes were of Mc 0.9, 1.4, and 1.8. Since 1972, INL has recorded 36 small-magnitude microearthquakes (M < 2.0) within the ESRP.
Date: September 1, 2008
Creator: Payne, S. J.; Carpenter, N. S.; Hodges, J. M. & Berg, R. G.
Partner: UNT Libraries Government Documents Department

Preliminary results of microearthquake survey, Northern Adak Island, Alaska

Description: Nine MEQ-800 portable seismic systems were emplaced and recordings taken during the 30 day period between September 5 to October 4, 1982. During this interval 190 events were correlated on two or more stations by Mincomp. Twenty four of these, seen on four or more stations and considered to be local in origin, yielded, according to Mincomp, reasonable hypocenters and origin times using a homogeneous earth model having a velocity of 5 km/sec. A plot of these hypocenters showed much of the microearthquake activity recorded during the survey to be located beneath Mt. Adagdak. This is different from the events located by the Butler and Keller (1974) microearthquake survey which placed hypocenters beneath the sea in Andrew Bay north and northwest of Mt. Adagdak. Butler and Keller did project a fault plane to the surface which would project southwest through Mt. Adagdak and Andrew Bay Volcano. ESL hypocenter locations using the layered earth model show many of the identified events to occur on the northeast corner of the island at focal depths of 8-10 km. It is not obvious that the observed events are related to a single active fault. If so, the fault must be at a low dip angle as shown by the least-squares-fit to the data on Figure 3. Alternatively, the majority of the events occurring within a fairly restrictive range of focal depths may be more indicative of a magma chamber and the movement of magma. Further interpretation of the microearthquake data obtained during 1982 is, however, outside the scope of this report. The relatively small error ellipses for hypocenter locations, compared to the distribution of hypocenters shown on Plates V and VI lead us to question the validity of the projection of all hypocenters to define a single fault location and orientation. It is apparent ...
Date: January 1, 1982
Creator: Mackelprang, Claron E.
Partner: UNT Libraries Government Documents Department

Reservoir fracture mapping using microearthquakes: Austin chalk, Giddings field, TX and 76 field, Clinton Co., KY

Description: Patterns of microearthquakes detected downhole defined fracture orientation and extent in the Austin chalk, Giddings field, TX and the 76 field, Clinton Co., KY. We collected over 480 and 770 microearthquakes during hydraulic stimulation at two sites in the Austin chalk, and over 3200 during primary production in Clinton Co. Data were of high enough quality that 20%, 31% and 53% of the events could be located, respectively. Reflected waves constrained microearthquakes to the stimulated depths at the base of the Austin chalk. In plan view, microearthquakes defined elongate fracture zones extending from the stimulation wells parallel to the regional fracture trend. However, widths of the stimulated zones differed by a factor of five between the two Austin chalk sites, indicating a large difference in the population of ancillary fractures. Post-stimulation production was much higher from the wider zone. At Clinton Co., microearthquakes defined low-angle, reverse-fault fracture zones above and below a producing zone. Associations with depleted production intervals indicated the mapped fractures had been previously drained. Drilling showed that the fractures currently contain brine. The seismic behavior was consistent with poroelastic models that predicted slight increases in compressive stress above and below the drained volume.
Date: November 1, 1996
Creator: Phillips, W.S.; Rutledge, J.T.; Gardner, T.L.; Fairbanks, T.D.; Miller, M.E. & Schuessler, B.K.
Partner: UNT Libraries Government Documents Department

Identifying structures in clouds of induced microseismic events

Description: A method for finding improved relative locations of microearthquakes accompanying fluid production and injection is presented. The method is based on the assumption that the microearthquake locations are more clustered than found when events are located using conventional techniques. By allowing the rms misfit between measured arrival times and predicted arrival times to increase if events move closer together, the authors find that there is more structure in the pattern of seismic locations. The method is demonstrated using a dataset of microearthquakes induced by hydraulic fracturing. The authors find that structures found using relative arrival times of events having similar waveforms to find improved relative locations of events can also be recovered using the new inversion method but without the laborious repicking procedure. The method provides improved relative locations and hence, an improved image of the structure within the seismic zone that may allow for a better relation between microearthquake locations and zones of increased fluid permeability to be found.
Date: July 1, 1997
Creator: Fehler, M.; House, L. & Phillips, W.S.
Partner: UNT Libraries Government Documents Department

A comprehensive study of fracture patterns and densities in the Geysers geothermal reservoir using microearthquake shear-wave splitting tomography. [Quarterly progress report 03/16/1998 - 06/15/1998]

Description: We completed the process of identifying shear-wave splitting in the Geyser area. A total of 2700 observations were recorded with about 1700 observations from the 1988 data and about 1000 observations from 1994. Fast polarization direction map in Figure 1 shows that most of the stations in the Geyser area display consistent direction throughout the main field, between 0{degree} azimuth to 40{degree} azimuth. Some exemptions to the consistent crack alignment (fast polarization direction) can be seen in stations 9 and station 3, and also in stations 13 and 14 outside the field. Since the stations are in boreholes it is possible that some of the station orientations, calculated using P-wave arrivals from located events, are erroneous. If we treat measurements of polarization direction as a statistical process, same as deep of layer measurement, we can say that in the small area of the station we have aligned cracks. Figures 2 and 3 show results of the crack density inversion assuming regional crack azimuth of 20{degree}. Almost 2400 raypaths were used to perform this tomographic inversion. There is weak dependency of the results on the regional crack direction, but the main areas of high and low crack density are the same. The changes are mainly in the size of the anomalies. Since the amplitudes of those anomalies depend mainly on the damping parameter we use in the inversion, exact regional crack direction is not a critical parameter of the inversion. The map in figure 2 and cross-sections in Figure 3 show two areas of high crack density at the top 1 km one at station 8 and the other between stations 6 and 5. At greater depth of 1 to 2 km those two area converge to one high crack density anomaly between stations 3, 4, 11, and 10.
Date: March 17, 1999
Creator: Malin, P.E. & Shalev, E.
Partner: UNT Libraries Government Documents Department

Microearthquakes induced by a hydraulic injection in sedimentary rock, East Texas

Description: In October, 1993, ARCO carried out a hydraulic injection near Beaumont, TX, into an unconsolidated sand, the Frio Formation. Fluid was injected into a 55m long zone at a depth of 1350 m. Four separate injections were done during 5 days. A total of more than 2.1 million gallons of bentonite slurry was injected, along with more than 3 million pounds of sand. Downhole fluid injection pressures ranged between about 3000 and 3500 psi. Induced microearthquakes were monitored by a set of 25 geophone packages situated in each of two monitoring well. More than 2400 microearthquakes were recorded during the injection, although most were too small to locate reliably using arrival times. A total of 54 microearthquakes were selected for detailed study. They were precisely located using arrival times of P and S phases from both of the monitoring boreholes. These locations are distributed non-uniformly, with a cluster near the injection borehole, a linear distribution about 200 m from the injection borehole, and a relatively quiet zone in between. The relatively nonseismic behavior in the middle zone compared to the other two zones suggests that this zone represent a discontinuity in the Frio Formation, although no obvious discontinuity has been identified from logs or nearby seismic reflection profiles. The large vertical extent of the geophone packages allowed an inversion of the arrival times for transverse isotropic elastic parameters, which yielded Vp anisotropy of about -13% and Vs of about -2%. Since these anisotropy values indicate that the vertical Vp and Vs are larger than the horizontal, they are surprising for this well bedded formation. Single-event focal mechanisms could be determined for 47 of the microearthquakes, and all are shear slip type. They show a large range of mechanisms, ranging from normal to reverse slip. Normal or oblique-normal slip predominant though, ...
Date: August 1, 1996
Creator: House, L.; Flores, R. & Withers, R.
Partner: UNT Libraries Government Documents Department

A comprehensive study of fracture patterns and densities in the Geysers geothermal reservoir using microearthquake shear-wave splitting tomography [Quarterly progress report 06/16/1998 - 09/15/1998]

Description: We completed the process of locating events and identifying shear-wave splitting in the mammoth area. A total of 2250 split shear wave observations were recorded in the four month period that our network was in place. Fast polarization direction map in Figure 1 shows that most of the stations in the mammoth area display consistent direction throughout the main field, between 300{degree} azimuth to 0{degree} azimuth. Some exemptions to the consistent crack alignment (fast polarization direction) can be seen in station M19, and some stations display inconsistent trend as can be observed in stations M25, M18, and M07. It is possible that station M19 was misaligned during installment. Figure 2 shows the cumulative rose diagram for all observations with a clear preferred direction. Figure 3 also shows that most of the observations of fast split shear wave are in the same direction and that those observation are distributed throughout the target area. If we treat measurements of polarization direction as a statistical process, same as deep of layer measurement, we can say that in the small area of the station we have aligned cracks. Figures 4 and 5 show results of the crack density inversion assuming regional crack azimuth of 340{degree}. Almost 2000 raypaths were used to perform this tomographic inversion. There is weak dependency of the results on the regional crack direction, but the main areas of high and low crack density are the same. The changes are mainly in the size of the anomalies. Since the amplitudes of those anomalies depend mainly on the damping parameter we use in the inversion, exact regional crack direction is not a critical parameter of the inversion. The map in figure 4 and cross-sections in Figure 5 show two areas of high crack density: one northeast of the Casa Diablo area at ...
Date: March 26, 1999
Creator: Malin, P.E. & Shalev, E.
Partner: UNT Libraries Government Documents Department

Characterization and application of microearthquake clusters to problems of scaling, fault zone dynamics, and seismic monitoring at Parkfield, California

Description: This document contains information about the characterization and application of microearthquake clusters and fault zone dynamics. Topics discussed include: Seismological studies; fault-zone dynamics; periodic recurrence; scaling of microearthquakes to large earthquakes; implications of fault mechanics and seismic hazards; and wave propagation and temporal changes.
Date: October 1, 1995
Creator: Nadeau, R. M.
Partner: UNT Libraries Government Documents Department

2001 - 2002 Upper Three Runs Sequence of Earthquakes at the SRS, South Carolina

Description: On October 08, 2001 a small felt earthquake occurred near Upper Three Runs Creek in the north central area of the Savannah River Site, South Carolina. Seven very small aftershocks followed the main event with the last one occurring March 06, 2002. All activity occurred within a small area. Further analysis of collected data indicates a correlation of this low level seismic activity with a small northwest trending structure observed in detailed gravity and magnetic data. Both single event and composite focal mechanisms were derived using local and regional stations. Results indicated predominantly dip-slip motion along a fault striking NNW at 335 degrees and dipping 41 degrees to the southwest. A 3D plot of the eight hypocenters clearly defines a fault plane nearly analogous to that obtained from the focal solutions. The Upper Three Runs series of events is another example of a separate class of earthquakes that occur within the central Piedmont and upper Coastal Plain of South Carolina. The Upper Three Runs sequence of events demonstrates that shallow intersections of structures interpreted from potential field data can be the foci for localized stress concentrations where microearthquake activity can occur. These earthquakes are attributable to small scale faults associated with pockets of relatively high stress concentrations and are generally accompanied by loud noises. Their shallow depth and small aerial extent suggest that these earthquakes are extremely localized and are not attributable to any large scale regional features.
Date: October 16, 2003
Creator: Stevenson, D.A.
Partner: UNT Libraries Government Documents Department

Subtask 2.2 - Creating A Numerical Technique for Microseismic Data Inversion

Description: Geomechanical and geophysical monitoring are the techniques which can complement each other and provide enhancement in the solutions of many problems of geotechnical engineering. One of the most promising geophysical techniques is passive seismic monitoring. The essence of the technique is recording the acoustic signals produced in the subsurface, either naturally or in response to human activity. The acoustic signals are produced by mechanical displacements on the contacts of structural elements (e.g., faults, boundaries of rock blocks, natural and induced fractures). The process can be modeled by modern numerical techniques developed in geomechanics. The report discusses a study that was aimed at the unification of the passive seismic monitoring and numerical modeling for the monitoring of the hydraulic fracture propagation. The approach adopted in the study consisted of numerical modeling of the seismicity accompanying hydraulic fracture propagation and defining seismic attributes and patterns characterizing the process and fracture parameters. Numerical experiments indicated that the spatial distribution of seismic events is correlated to geometrical parameters of hydrofracture. Namely, the highest density of the events is observed along fracture contour, and projection of the events to the fracture plane makes this effect most pronounced. The numerical experiments also showed that dividing the totality of the events into groups corresponding to the steps of fracture propagation allows for reconstructing the geometry of the resulting fracture more accurately than has been done in the majority of commercial applications.
Date: May 1, 2009
Creator: Dobroskok, Anastasia; Holubnyak, Yevhen & Sorensen, James
Partner: UNT Libraries Government Documents Department

INL Seismic Monitoring Annual Report: January 1, 2008 – December 31, 2008

Description: During 2008, the INL Seismic Monitoring Program evaluated 7,284 earthquakes from around the world, the western United States, and local region of the eastern Snake River Plain. 2,396 earthquakes and man-made blasts were evaluated within the local region outside and within a 161-km (or 100-mile) radius of INL. Of these events, 25 were small to moderate size earthquakes ranging in magnitude from 3.0 to 3.9. 823 earthquakes occurred within the 161-km radius of INL and over 300 events were associated with eight different earthquake swarms which were located in active regions of the Basin and Range Province that surrounds the eastern Snake River Plain. Eight microearthquakes in 2008 of magnitude (M) 2.0 and less were located within the eastern Snake River Plain, seven at or near the Craters of the Moon National Monument and one within the INL boundary. Further analyses of the anomalously deep focal depths (15 to 42 km) and different waveform characteristics of all Craters of the Moon National Monument events (1999-2008) suggest association with magmatic processes. From 1972 to 2008, INL located 36 other small-magnitude microearthquakes (M < 2.0) at depths (< 11 km) within the eastern Snake River Plain and attributes these events to regional tectonic tensional stresses.
Date: September 1, 2009
Creator: Payne, S. J.; Carpenter, N. S.; Hodges, J. M. & Berg, R. G.
Partner: UNT Libraries Government Documents Department

A comprehensive study of fracture patterns and densities in the Geysers geothermal reservoir using microearthquake shear-wave splitting tomography. Quarterly report for Sep-Dec 1998

Description: We start organizing the computer programs needed for crack density inversion into an easy to follow scripts. These programs were collection of bits and pieces from many sources and we want to organize those separate programs into coherent product. We also gave a presentation (enclosed) in the Twenty-Fourth Workshop on Geothermal Reservoir Engineering in Stanford University on our Geyser and Mammoth results.
Date: March 31, 1999
Creator: Malin, Peter E. & Shalev, Eylon
Partner: UNT Libraries Government Documents Department

Geothermal regimes of the Clearlake region, northern California

Description: The first commercial production of power from geothermal energy, at The Geysers steamfield in northern California in June 1960, was a triumph for the geothermal exploration industry. Before and since, there has been a search for further sources of commercial geothermal power in The Geysers--Clear Lake geothermal area surrounding The Geysers. As with all exploration programs, these were driven by models. The models in this case were of geothermal regimes, that is, the geometric distribution of temperature and permeability at depth, and estimates of the physical conditions in subsurface fluids. Studies in microseismicity and heat flow, did yield geophysical information relevant to active geothermal systems. Studies in stable-element geochemistry found hiatuses or divides at the Stoney Creek Fault and at the Collayomi Fault. In the region between the two faults, early speculation as to the presence of steamfields was disproved from the geochemical data, and the potential existence of hot-water systems was predicted. Studies in isotope geochemistry found the region was characterized by an isotope mixing trend. The combined geochemical data have negative implications for the existence of extensive hydrothermal systems and imply that fluids of deep origin are confined to small, localized systems adjacent to faults that act as conduits. There are also shallow hot-water aquifers. Outside fault-localized systems and hot-water aquifers, the area is an expanse of impermeable rock. The extraction of energy from the impermeable rock will require the development and application of new methods of reservoir creation and heat extraction such as hot dry rock technology.
Date: June 1, 1998
Creator: Amador, M.; Burns, K.L. & Potter, R.M.
Partner: UNT Libraries Government Documents Department

Vertical arrays for fracture mapping in geothermal systems

Description: In collaboration with UNOCAL Geothermal Operations, Los Alamos National Laboratory assessed the feasibility of using vertical arrays of borehole seismic sensors for mapping of microseismicity in The Geysers geothermal field. Seismicity which arises from minute displacements along fracture or fault surfaces has been shown in studies of seismically active oil reservoirs to be useful in identifying fractures affected by and possibly contributing to production. Use of retrievable borehole seismic packages at The Geysers was found to reduce the threshold for detection of microearthquakes by an estimated 2--3 orders of magnitude in comparison to surface-based sensors. These studies led to the design, materials selection, fabrication, and installation of a permanent array of geophones intended for long term seismic monitoring and mapping of fractures in the vicinity of the array at The Geysers.
Date: December 1, 1998
Creator: Albright, J.N.; Rutledge, J.T.; Fairbanks, T.D.; Thomson, J.C. & Stevenson, M.A.
Partner: UNT Libraries Government Documents Department

3D Magnetotelluic characterization of the Coso GeothermalField

Description: Electrical resistivity may contribute to progress inunderstanding geothermal systems by imaging the geometry, bounds andcontrolling structures in existing production, and thereby perhapssuggesting new areas for field expansion. To these ends, a dense grid ofmagnetotelluric (MT) stations plus a single line of contiguous bipolearray profiling has been acquired over the east flank of the Cosogeothermal system. Acquiring good quality MT data in producing geothermalsystems is a challenge due to production related electromagnetic (EM)noise and, in the case of Coso, due to proximity of a regional DCintertie power transmission line. To achieve good results, a remotereference completely outside the influence of the dominant source of EMnoise must be established. Experimental results so far indicate thatemplacing a reference site in Amargosa Valley, NV, 65 miles from the DCintertie, isstill insufficient for noise cancellation much of the time.Even though the DC line EM fields are planar at this distance, theyremain coherent with the nonplanar fields in the Coso area hence remotereferencing produces incorrect responses. We have successfully unwrappedand applied MT times series from the permanent observatory at Parkfield,CA, and these appear adequate to suppress the interference of thecultural EM noise. The efficacy of this observatory is confirmed bycomparison to stations taken using an ultra-distant reference site eastof Socorro, NM. Operation of the latter reference was successful by usingfast ftp internet communication between Coso Junction and the New MexicoInstitute of Mining and Technology, using the University of Utah site asintermediary, and allowed referencing within a few hours of datadownloading at Coso. A grid of 102 MT stations was acquired over the Cosogeothermal area in 2003 and an additional 23 stations were acquired toaugment coverage in the southern flank of the first survey area in 2005.These data have been inverted to a fully three-dimensional conductivitymodel. Initial analysis of the Coso MT data was carried out using ...
Date: April 23, 2007
Creator: Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E. & Gasperikova, Erika
Partner: UNT Libraries Government Documents Department

INL Seismic Monitoring Annual Report: January 1, 2010 – December 31, 2010

Description: During 2010, the INL Seismic Monitoring Program evaluated 11,606 earthquakes from around the world, the western United States, and local region of the eastern Snake River Plain (ESRP). INL located 2,085 earthquakes and man-made blasts within the local region outside and within a 161-km (or 100-mile) radius of INL. Of these events, 53 were small-to-moderate size earthquakes ranging in magnitude from 3.0 to 4.8. 672 earthquakes occurred within the 161-km radius of INL and the majority of these earthquakes were located in active regions of the Basin and Range Province that surrounds the ESRP. There were 10 microearthquakes within the boundary of the ESRP, all of magnitude less than or equal to 2.0. Five of those were located within and near the ESRP at Craters of the Moon National Monument (COM) at mid- and lower-crust depths and are interpreted to be related to fluid movement. Since 1972, INL has recorded 48 small-magnitude, microearthquakes (M = 2.2) within the ESRP (not including COM events) and 22 deep microearthquakes (M = 2.3) in the vicinity of Craters of the Moon National Monument.
Date: September 1, 2011
Creator: Carpenter, N. Seth; Payne, Suzette J.; Hodges, Jed M. & Berg, Robert G.
Partner: UNT Libraries Government Documents Department

Newberry Seismic Deployment Fieldwork Report

Description: This report summarizes the seismic deployment of Lawrence Livermore National Laboratory (LLNL) Geotech GS-13 short-period seismometers at the Newberry Enhanced Geothermal System (EGS) Demonstration site located in Central Oregon. This Department of Energy (DOE) demonstration project is managed by AltaRock Energy Inc. AltaRock Energy had previously deployed Geospace GS-11D geophones at the Newberry EGS Demonstration site, however the quality of the seismic data was somewhat low. The purpose of the LLNL deployment was to install more sensitive sensors which would record higher quality seismic data for use in future seismic studies, such as ambient noise correlation, matched field processing earthquake detection studies, and general EGS microearthquake studies. For the LLNL deployment, seven three-component seismic stations were installed around the proposed AltaRock Energy stimulation well. The LLNL seismic sensors were connected to AltaRock Energy Gueralp CMG-DM24 digitizers, which are powered by AltaRock Energy solar panels and batteries. The deployment took four days in two phases. In phase I, the sites were identified, a cavity approximately 3 feet deep was dug and a flat concrete pad oriented to true North was made for each site. In phase II, we installed three single component GS-13 seismometers at each site, quality controlled the data to ensure that each station was recording data properly, and filled in each cavity with native soil.
Date: March 21, 2012
Creator: Wang, J. & Templeton, D. C.
Partner: UNT Libraries Government Documents Department

Microearthquake monitoring at the Southeast Geysers using a high-resolution digital array

Description: Microearthquake activity at the Southeast Geysers, California, geothermal field is monitored with a high-resolution digital seismic network. Hypocenters are spatially clustered in both injection and production areas, but also occur in more diffuse patterns, mostly at depths from 1 to 2.8 km. Hypocenters near the injection well DV-11 exhibit a striking correlation with movement of injectate and injectate-derived steam. Preliminary moment tensor results show promise to provide information on the differing source mechanisms resulting from fluid injection and steam extraction.
Date: January 26, 1995
Creator: Kirkpatrick, Ann; Peterson, John E., Jr. & Majer, Ernie L.
Partner: UNT Libraries Government Documents Department

A Strategy for Interpretation of Microearthquake Tomography Results in the Salton Sea Geothermal Field Based upon Rock Physics Interpretations of State 2-14 Borehole Logs

Description: We devise a strategy for analysis of Vp and Vs microearthquake tomography results in the Salton Sea geothermal field to identify important features of the geothermal reservoir. We first interpret rock properties in State 2-14 borehole based upon logged core through the reservoir. Then, we interpret seismic recordings in the well (Daley et al., 1988) to develop the strategy. We hypothesize that mapping Poisson's ratio has two applications for the Salton Sea geothermal reservoir: (1) to map the top of the reservoir, and (2) as a diagnostic for permeable zones. Poisson's ratio can be obtained from Vp and Vs. In the State 2-14 borehole, Poisson's ratio calculated from large scale averages ({approx} 150 m) shows a monotonic decrease with depth to about 1300 m, at which point it increases with depth. Our model is that the monotonic decrease is due to compaction, and the increase below 1300 m is due to the rocks being hydrothermally altered. We hypothesize we can map the depth to alteration by identifying the transition from decreasing to increasing values; and thus, map the top of the reservoir, which is associated with a known increase in sulfite, chlorite, and epidote alteration that may be indicative of hydrothermal activity. We also observe (from Daley et. al. plots) an anomalous drop in Poisson's ratio at a depth of about 900 m, within a sandstone formation. The sandstone has a P-wave velocity significantly higher than the siltstone above it but a lower velocity in the lower half of the formation relative to the upper half. We interpret the relative decrease in velocity to be due to fracturing and chemical alteration caused by permeability. We conclude that using Vp and Vs tomography results to obtain images of Poisson's ratio has the potential to identify significant features in the geothermal reservoir ...
Date: June 14, 2006
Creator: Bonner, B; Hutchings, L & Kasameyer, P
Partner: UNT Libraries Government Documents Department

Microearthquake Study of the Salton Sea Geothermal Field, California: Evidence of Stress Triggering - Masters Thesis

Description: A digital network of 24 seismograph stations was operated from September 15, 1987 to September 30, 1988, by Lawrence Livermore National Laboratory and Unocal as part of the Salton Sea Scientific Drilling Project to study seismicity related to tectonics and geothermal activity near the drilling site. More than 2001 microearthquakes were relocated in this study in order to image any pervasive structures that may exist within the Salton Sea geothermal field. First, detailed velocity models were obtained through standard 1-D inversion techniques. These velocity models were then used to relocate events using both single event methods and Double-Differencing, a joint hypocenter location method. An anisotropic velocity model was built from anisotropy estimates obtained from well logs within the study area. During the study period, the Superstition wills sequence occurred with two moderate earthquakes of MS 6.2 and MS 6.6. These moderate earthquakes caused a rotation of the stress field as observed from the inversion of first motion data from microearthquakes at the Salton Sea geothermal field. Coulomb failure analysis also indicates that microearthquakes occurring after the Superstition Hills sequence are located within a region of stress increase suggesting stress triggering caused by the moderate earthquakes.
Date: February 1, 2002
Creator: Holland, Austin Adams
Partner: UNT Libraries Government Documents Department

Insights From Laboratory Experiments On Simulated Faults With Application To Fracture Evolution In Geothermal Systems

Description: Laboratory experiments provide a wealth of information related to mechanics of fracture initiation, fracture propagation processes, factors influencing fault strength, and spatio-temporal evolution of fracture properties. Much of the existing literature reports on laboratory studies involving a coupling of thermal, hydraulic, mechanical, and/or chemical processes. As these processes operate within subsurface environments exploited for their energy resource, laboratory results provide insights into factors influencing the mechanical and hydraulic properties of geothermal systems. I report on laboratory observations of strength and fluid transport properties during deformation of simulated faults. The results show systematic trends that vary with stress state, deformation rate, thermal conditions, fluid content, and rock composition. When related to geophysical and geologic measurements obtained from engineered geothermal systems (e.g. microseismicity, wellbore studies, tracer analysis), laboratory results provide a means by which the evolving thermal reservoir can be interpreted in terms of physico-chemical processes. For example, estimates of energy release and microearthquake locations from seismic moment tensor analysis can be related to strength variations observed from friction experiments. Such correlations between laboratory and field data allow for better interpretations about the evolving mechanical and fluid transport properties in the geothermal reservoir – ultimately leading to improvements in managing the resource.
Date: June 1, 2006
Creator: Stephen L. Karner, Ph.D
Partner: UNT Libraries Government Documents Department