35 Matching Results

Search Results

Advanced search parameters have been applied.

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

Description: This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.
Date: February 11, 2003
Creator: Hitzman, D. O.; Stepp, A. K.; Dennis, D. M. & Graumann, L. R.
Partner: UNT Libraries Government Documents Department

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

Description: This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery.
Date: February 11, 2003
Creator: Hitzman, D.O. & Stepp, A.K.
Partner: UNT Libraries Government Documents Department

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

Description: This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.
Date: February 11, 2003
Creator: Hitzman, D.O.; Stepp, A.K.; Dennis, D.M. & Graumann, L.R.
Partner: UNT Libraries Government Documents Department

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

Description: This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.
Date: February 11, 2003
Creator: Hitzman, D.O.; Stepp, A.K.; Dennis, D.M. & Graumann, L.R.
Partner: UNT Libraries Government Documents Department

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

Description: This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery.
Date: February 11, 2003
Creator: Hitzman, D.O.; Bailey, S.A. & Stepp, A.K.
Partner: UNT Libraries Government Documents Department

The Utilization of the Microflora Indigenous to and Present in Oil-Bearing Formations to Selectively Plug the More Porous Zones Thereby Increasing Oil Recovery During Waterflooding

Description: This project was designed to demonstrate that a microbially enhanced oil recovery process (MEOR), developed in part under DOE Contract No. DE-AC22-90BC14665, will increase oil recovery from fluvial dominated deltaic oil reservoirs. The process involves stimulating the in-situ indigenous microbial population in the reservoir to grow in the more permeable zones, thus diverting flow to other areas of the reservoir, thereby increasing the effectiveness of the waterflood. This five and a half year project is divided into three phases, Phase I, Planning and Analysis (9 months), Phase II, Implementation (45 months), and Phase III, Technology Transfer (12 months). Phase I was completed and reported in the first annual report. This fifth annual report covers the completion of Phase II and the first six months of Phase III.
Date: July 1, 1999
Creator: Brown, Lewis R.; Byrnes, Martin J.; Stephens, James O. & Vadie, Alex A.
Partner: UNT Libraries Government Documents Department

Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir

Description: The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs.
Date: October 28, 1999
Creator: Hickman, Scott T.; L., Justice James & Taylor, Archie R.
Partner: UNT Libraries Government Documents Department

INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

Description: This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions and technologies for improving oil production. The goal was to identify and utilize indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work in model sandpack cores was conducted using microbial cultures isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters using cultures and conditions representative of oil reservoirs. Increased oil recovery in multiple model sandpack systems was achieved and the technology and results were verified by successful field studies. Direct application of the research results has lead to the development of a feasible, practical, successful, and cost-effective technology which increases oil recovery. This technology is now being commercialized and applied in numerous field projects to increase oil recovery. Two field applications of the developed technology reported production increases of 21% and 24% in oil recovery.
Date: September 1, 2003
Creator: Hitzman, D.O.; Stepp, A.K.; Dennis, D.M. & Graumann, L.R.
Partner: UNT Libraries Government Documents Department

Venezuela-MEM/USA-DOE Fossil Energy Report XIII-1, Supporting Technology for Enhanced Oil Recovery, Microbial EOR

Description: The results from Annex XIII of the Cooperative Agreement between the United States Department of Energy (DOE) and the Ministry of Energy and Mines of the Republic of Venezuela (MEMV) have been documented and published with many researchers involved. Integrate comprehensive research programs in the area of Microbial Enhanced Oil Recovery (MEOR) ranged from feasibility laboratory studies to full-scale multi-well field pilots. The objective, to cooperate in a technical exchange of ideas and information was fully met throughout the life of the Annex. Information has been exchanged between the two countries through published reports and technical meetings between experts in both country's research communities. The meetings occurred every two years in locations coincident with the International MEOR conferences & workshops sponsored by DOE (June 1990, University of Oklahoma, September 1992, Brookhaven, September 1995, National Institute of Petroleum and Energy Research). Reports and publications produced during these years are listed in Appendix B. Several Annex managers have guided the exchange through the years. They included Luis Vierma, Jose Luis Zirritt, representing MEMV and E. B. Nuckols, Edith Allison, and Rhonda Lindsey, representing the U.S. DOE. Funding for this area of research remained steady for a few years but decreased in recent years. Because both countries have reduced research programs in this area, future exchanges on this topic will occur through ANNEX XV. Informal networks established between researchers through the years should continue to function between individuals in the two countries.
Date: November 3, 1999
Creator: Ziritt, Jose Luis
Partner: UNT Libraries Government Documents Department

Augmenting a Microbial Selective Plugging Technique with Polymer Flooding to Increase the Efficiency of Oil Recovery - A Search for Synergy

Description: The objective of this project was to determine if the effectiveness of a microbial permeability profile modification technique can be improved through polymer flooding.
Date: February 10, 2003
Creator: Brown, Lewis R.; Pittman Jr., Charles U.; Lynch, F. Leo; Vadie, A. Alex & French, W. Todd
Partner: UNT Libraries Government Documents Department

Augmenting a Microbial Selective Plugging Technique with Polymer Flooding to Increase the Efficiency of Oil Recovery - A Search for Synergy

Description: The overall objective of this project was to improve the effectiveness of a microbial selective plugging technique of improving oil recovery through the use of polymer floods. More specifically, the intent was to increase the total amount of oil recovered and to reduce the cost per barrel of incremental oil.
Date: February 10, 2003
Creator: Brown, Lewis R.; Pittman Jr., Charles & Lynch, F. Leo
Partner: UNT Libraries Government Documents Department

Augmenting a Microbial Selective Plugging Technique with Polymer Flooding to Increase the Efficiency of Oil Recovery - A Search for Synergy

Description: The overall objective of this project was to improve the effectiveness of a microbial selective plugging technique of improving oil recovery through the use of polymer floods. More specifically, the intent was to increase the total amount of oil recovered and to reduce the cost per barrel of incremental oil.
Date: February 10, 2003
Creator: Brown, Lewis R.; Pittman Jr., Charles U.; Lynch, F. Leo & Vadie, A. Alex
Partner: UNT Libraries Government Documents Department

Augmenting a Microbial Selective Plugging Technique with Polymer Flooding to Increase the Efficiency of Oil Recovery - A Search for Synergy

Description: The overall objective of this project was to improve the effectiveness of a microbial selective plugging technique of improving oil recovery through the use of polymer floods. More specifically, the intent was to increase the total amount of oil recovered and to reduce the cost per barrel of incremental oil.
Date: February 10, 2003
Creator: Brown, Lewis R.; Vadie, A. Alex; Pittman Jr., Charles U. & Lynch, F. Leo
Partner: UNT Libraries Government Documents Department

A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

Description: The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.
Date: July 2005
Creator: Delshad, Mojdeh; Pope, Gary A. & Sepehrnoori, Kamy
Partner: UNT Libraries Government Documents Department

An overview of field specific designs of microbial EOR

Description: The selection and design of a microbial enhanced oil recovery (MEOR) process for application in a specific field involves geological, reservoir, and biological characterization. Microbially mediated oil recovery mechanisms (biogenic gas, biopolymers, and biosurfactants) are defined by the types of microorganisms used. The engineering and biological character of a given reservoir must be understood to correctly select a microbial system to enhance oil recovery. The objective of this paper is to discuss the methods used to evaluate three fields with distinct characteristics and production problems for the applicability of MEOR technology. Reservoir characteristics and laboratory results indicated that MEOR would not be applicable in two of the three fields considered. The development of a microbial oil recovery process for the third field appeared promising. Development of a bacterial consortium capable of producing the desired metabolites was initiated and field isolates were characterized.
Date: December 1, 1995
Creator: Robertson, E.P.; Bala, G.A.; Fox, S.L.; Jackson, J.D. & Thomas, C.P.
Partner: UNT Libraries Government Documents Department

Effects of selected thermophilic microorganisms on crude oils at elevated temperatures and pressures. Final report

Description: During the past several years, a considerable amount of work has been carried out showing that microbially enhanced oil recovery (MEOR) is promising and the resulting biotechnology may be deliverable. At the Brookhaven National Laboratory (BNL), systematic studies have been conducted which dealt with the effects of thermophilic and thermoadapted bacteria on the chemical and physical properties of selected types of crude oils at elevated temperatures and pressures. Particular attention was paid to heavy crude oils from Venezuela, California, Alabama, Arkansas, Wyoming, Alaska, and other oil producing areas. Current studies indicate that during the biotreatment several chemical and physical properties of crude oils are affected. The oils are (1) emulsified; (2) acidified; (3) there is a qualitative and quantitative change in light and heavy fractions of the crudes; (4) there are chemical changes in fractions containing sulfur compounds; (5) there is an apparent reduction in the concentration of trace metals; (6) the qualitative and quantitative changes appear to be microbial species dependent; and (7) there is a distinction between {open_quotes}biodegraded{close_quotes} and {open_quotes}biotreated{close_quotes} oils. Preliminary results indicate the introduced microorganisms may become the dominant species in the bioconversion of oils. These studies also indicate the biochemical interactions between crude oils and microorganisms follow distinct trends, characterized by a group of chemical markers. Core-flooding experiments have shown significant additional crude oil recoveries are achievable with thermophilic microorganisms at elevated temperatures similar to those found in oil reservoirs. In addition, the biochemical treatment of crude oils has technological applications in downstream processing of crude oils such as in upgrading of low grade oils and the production of hydrocarbon based detergents.
Date: July 1, 1995
Creator: Premuzic, E.T. & Lin, M.S.
Partner: UNT Libraries Government Documents Department

Assessment of Long-Term Research Needs for Shale-Oil Recovery (FERWG-III)

Description: The Fossil Energy Research Working Group (FERWG), at the request of E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has reviewed and evaluated the U.S. programs on shale-oil recovery. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term prospects for shale-oil availability. This report summarizes the findings and research recommendations of FERWG.
Date: March 1981
Creator: Penner, S. S.
Partner: UNT Libraries Government Documents Department

A Framework to Design and Optimize Chemical Flooding Processes

Description: The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.
Date: August 31, 2006
Creator: Delshad, Mojdeh; Pope, Gary A. & Sepehrnoori, Kamy
Partner: UNT Libraries Government Documents Department

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

Description: This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work is underway. Microbial cultures have been isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters with cultures and conditions representative of oil reservoirs. Field pilot studies are underway.
Date: March 31, 2003
Creator: Hitzman, D. O.; Stepp, A. K.; Dennis, D. M. & Graumann, L. R.
Partner: UNT Libraries Government Documents Department

PRODUCTION IMPROVEMENT FROM INCREASED PERMEABILITY USING ENGINEERED BIOCHEMICAL SECONDARY RECOVERY METHODOLOGY IN MARGINAL WELLS OF THE EAST TEXAS FIELD

Description: A regenerating biochemical mixture and organic surfactant has been applied to wells in the East Texas Field with the goal of restoring permeability, reversing formation damage, mobilizing hydrocarbons, and ultimately increasing production. Initial work in task 1 was designed to open the perforations and remove blockages of scale, asphaltene, and other corrosion debris. This was accomplished on three wells that produce from the Woodbine, and was necessary to prepare the wells for more substantial future treatments. Secondly, in task 2, two wells were treated with much larger quantities of the biochemical mixture, e.g. 25 gallons, followed by approximately 140 barrels of a 2% KCl solution that carried the active biochemical solution into the near wellbore area and into the producing reservoir. After a 7 to 10 day acclamation and reaction period, the wells were put back into production. The biochemical solution successfully broke down the scale, paraffin and other binders blocking permeability and released significant debris which was immediately produced into the flowlines and separators. Oil production was clearly improved and the removed debris was a maintenance issue until the surface equipment could be modified. Next steps include larger treatments and tracer tests to better understand the fluid flow dynamics.
Date: July 14, 2004
Creator: Bassett, R.L. & Botto, William S.
Partner: UNT Libraries Government Documents Department

An Evaluation of the Feasibility of Combining Carbon Dioxide Flooding Technologies with Microbial Enhanced Oil Recovery Technologies in Order To Sequester Carbon Dioxide

Description: The need for more energy as our population grows results in an increase in the amount of CO2 introduced into the atmosphere. The effect of this introduction is currently debated intensely as to the severity of the effect of this. The bjective of this investigation was to determine if the production of more energy (i.e. petroleum) and the sequestration of CO2 could be coupled into one process. Carbon dioxide flooding is a well-established technique that introduces Compressed CO2 into a subsurface oil-bearing formation to aide in liquefying harder to extract petroleum and enhancing its mobility towards the production wells.
Date: August 19, 2009
Creator: French, Todd; Brown, Lew; Hernandez, Rafael; Green, Magan; Prewitt, Lynn & Coggins, Terry
Partner: UNT Libraries Government Documents Department

The utilization of the microflora indigenous to and present in oil-bearing formations to selectively plug the more porous zones thereby increasing oil recovery during waterflooding, Class 1

Description: The objectives of this project were (1) to demonstrate the in situ microbial population in a fluvial dominated deltaic reservoir could be induced to proliferate to such an extent that they will selectively restrict flow in the more porous zones in the reservoir thereby forcing injection water to flow through previously unswept areas thus improving the sweep efficiency of the waterflood and (2) to obtain scientific validation that microorganisms are indeed responsible for the increased oil recovery. One expected outcome of this new technology was the prolongation of economical life of the reservoir, i.e. economical oil recovery should continue for much longer periods in areas of the reservoir subjected to the MPPM technology than it would if it followed its historic trend.
Date: February 2, 2000
Creator: Stephens, James O.; Brown, Lewis R. & Vadie, A. Alex
Partner: UNT Libraries Government Documents Department

COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

Description: Many domestic oil fields are facing abandonment even though they still contain two-thirds of their original oil. A significant number of these fields can yield additional oil using advanced oil recovery (AOR) technologies. To maintain domestic oil production at current levels, AOR technologies are needed that are affordable and can be implemented by independent oil producers of the future. Microbial enhanced oil recovery (MEOR) technologies have become established as cost-effective solutions for declining oil production. MEOR technologies are affordable for independent producers operating stripper wells and can be used to extend the life of marginal fields. The demonstrated versatility of microorganisms can be used to design advanced microbial systems to treat multiple production problems in complex, heterogeneous reservoirs. The proposed research presents the concept of a combined microbial surfactant-polymer system for advanced oil recovery. The surfactant-polymer system utilizes bacteria that are capable of both biosurfactant production and metabolically-controlled biopolymer production. This novel technology combines complementary mechanisms to extend the life of marginal fields and is applicable to a large number of domestic reservoirs. The research project described in this report is performed jointly by, Bio-Engineering Inc., a woman owned small business, Texas A&M University and Prairie View A&M University, a Historically Black College and University. This report describes the results of our laboratory work to grow microbial cultures and the work done on recovery experiments on core rocks. We have selected two bacterial strains capable of producing both surfactant and polymers. We have conducted laboratory experiments to determine under what conditions surfactants and polymers can be produced from one single strain. We have conduct recovery experiments to determine the performance of these strains under different conditions. Our results do not show a significant influence of nutrient regime on alternate production of surfactants or polymers.
Date: August 2004
Creator: Gabitto, Jorge & Barrufet, Maria
Partner: UNT Libraries Government Documents Department