572 Matching Results

Search Results

Advanced search parameters have been applied.

Development of a novel neutron source with applications in calibration and monitoring. Final report

Description: The objective of this research project, development of a unique portable inertial electrostatic confinement (IEC) neutron source (10{sup 6} 2.5-MeV neutrons/second-level) has been achieved. A majority of the experimental work required for the project was reported in the 1993 Annual Report. (The abstract and table of contents for that report arc included here as Appendix A for convenience. Full copies can be obtained upon request to the PI.) Unfortunately, the DOE program providing support for the project was canceled and funding was not available to continue the project in 199495. However, to provide time to explore some innovative potential applications for upgraded versions of the IEC, a no-cost extension of the contract was requested and granted in 1994. This follow-on work, mostly involving conceptual design studies, is reported here.
Date: April 1, 1995
Creator: Miley, G.H.
Partner: UNT Libraries Government Documents Department

Neutron interaction with doubly-magic {sup 40}Ca

Description: Differential neutron elastic and inelastic-scattering cross sections of elemental calcium (96.94% doubly-magic {sup 40}Ca) are measured from {approx} 1.5 to 10 MeV with sufficient detail to determine their energy-averaged behavior in the highly fluctuating environment. These results, combined with values previously reported in the literature, are assessed in the contexts of optical-statistical, dispersive optical, and coupled-channels models, applicable to the energy domain 0 {yields} 30+ MeV, with particular emphasis on the lower energies where the interpretations are sensitive to the dispersion relationship and the effective mass. The interpretations define the energy dependencies of the potential parameters (resolving prior ambiguities), suggest that previous estimates of the prominent low-energy (n,p) and (n,a) reactions are too large, reasonably describe observables to at least 30 MeV, and provide a vehicle for extrapolation into the bound-state regime that gives a good description of hole- and particle-state binding energies. The resulting real-potential parameters (in contrast to many {sup 40}Ca parameters reported in the literature) are shown consistent with global trends.
Date: November 1, 1993
Creator: Smith, A.B.
Partner: UNT Libraries Government Documents Department

Proton beam studies with a 1.25 MeV, cw radio frequency quadrupole linac

Description: A high-current, cw linear accelerator has been proposed as a spallation neutron source driver for tritium production. Key features of this accelerator are high current (100 mA), low emittance-growth beam propagation, cw operation, high efficiency, and minimal maintenance downtime. A 268 MHz, cw radio frequency quadrupole (RFQ) LINAC section and klystrode based rf system were obtained from the Chalk River Laboratories and were previously installed at LANL to support systems development and advanced studies in support of cw, proton accelerators. A variation of the Low Energy Demonstration Accelerator (LEDA) proton injector, modified to operate at 50 keV, was mated to the RFQ and was operated to support advance developments for the Accelerator Production of Tritium (APT) program. High current, proton beam studies were completed which focused on the details of injector-RFQ integration, development of beam diagnostics, development of operations procedures, and personnel and equipment safety systems integration. This development led to acceleration of up to 100 mA proton beam.
Date: December 31, 1998
Creator: Bolme, G.O.; Hardek, T.W. & Hansborough, L.D.
Partner: UNT Libraries Government Documents Department

Neutron scattering and models: Iron. Nuclear data and measurements series

Description: Differential elastic and inelastic neutron-scattering cross sections of elemental iron are measured from 4.5 to 10 MeV in increments of {approx} 0.5 MeV. At each incident energy the measurements are made at forty or more scattering angles distributed between {approx} 17{degrees} and 160{degrees}, with emphasis on elastic scattering and inelastic scattering due to the excitation of the yrast 2{sup +} state. The measured data is combined with earlier lower-energy results from this laboratory, with recent high-precision {approx} 9.5 {yields} 15 MeV results from the Physilalisch Technische Bundesanstalt and with selected values from the literature to provide a detailed neutron-scattering data base extending from {approx} 1.5 to 26 MeV. This data is interpreted in the context of phenomenological spherical-optical and coupled-channels (vibrational and rotational) models, and physical implications discussed. Deformation, coupling, asymmetry and dispersive effects are explored. It is shown that, particularly in a collective context, a good description of the interaction of neutrons with iron is achieved over the energy range {approx} 0 {yields} 26 MeV, avoiding the dichotomy between high and low-energy interpretations found in previous work.
Date: August 1995
Creator: Smith, A. B.
Partner: UNT Libraries Government Documents Department

Measurements of the {sup 235}U(n,f) cross section in the 3 to 30 MeV neutron energy region

Description: To improve the accuracy of the {sup 235}U(n,f) cross section, measurements have been made of this standard cross section at the target 4 facility at Los Alamos National Laboratory (LANL). The data were obtained at the 20-meter flight path of that facility. The fission reaction rate was determined with a fast parallel plate ionization chamber and the neutron fluence was measured with an annular proton recoil telescope. The measurements provide the shape of the {sup 235}U(n,f) cross section relative to the hydrogen scattering cross section for neutron energies from about 3 to 30 MeV neutron energy. The data have been normalized to the very accurately known value near 14 MeV. The results are in good agreement with the ENDF/B-VI evaluation up to about 15 MeV neutron energy. Above this energy differences as large as 5% are observed.
Date: December 31, 1991
Creator: Carlson, A.D.; Wasson, O.A. & Lisowski, P.W.
Partner: UNT Libraries Government Documents Department

Conceptual Design of a 50--100 MW Electron Beam Accelerator System for the National Hypersonic Wind Tunnel Program

Description: The National Hypersonic Wind Tunnel program requires an unprecedented electron beam source capable of 1--2 MeV at a beam power level of 50--100 MW. Direct-current electron accelerator technology can readily generate high average power beams to approximately 5 MeV at output efficiencies greater than 90%. However, due to the nature of research and industrial applications, there has never been a requirement for a single module with an output power exceeding approximately 500 kW. Although a 50--100 MW module is a two-order extrapolation from demonstrated power levels, the scaling of accelerator components appears reasonable. This paper presents an evaluation of component and system issues involved in the design of a 50--100 MW electron beam accelerator system with precision beam transport into a high pressure flowing air environment.
Date: June 1, 2000
Creator: SCHNEIDER,LARRY X.
Partner: UNT Libraries Government Documents Department

High Exposure Facility Technical Description

Description: The High Exposure Facility is a collimated high-level gamma irradiator that is located in the basement of the 318 building. It was custom developed by PNNL back in 1982 to meet the needs for high range radiological instrument calibrations and dosimeter irradiations. At the time no commercially available product existed that could create exposure rates up to 20,000 R/h. This document is intended to pass on the design criteria that was employed to create this unique facility, while maintaining compliance with ANSI N543-1974, "General Safety Standard for Installations Using Non-Medical X-Ray and Sealed Gamma-Ray Sources, Energies up to 10 MeV."
Date: February 12, 2008
Creator: Carter, Gregory L.; Stithem, Arthur R.; Murphy, Mark K. & Smith, Alex K.
Partner: UNT Libraries Government Documents Department

R-matrix evaluation of {sup 28}Si, {sup 29}Si and {sup 30}Si up to 1.8 MeV

Description: The intent of this paper is to present and describe the procedures used to evaluate the silicon cross sections in the resolved resonance region up to 1.8 MeV with the multilevel Reich-Moore R-matrix formalism and to present the results. The resonance analyses were performed with the SAMMY code which utilizes a generalized least squares technique (i.e., Bayes` method).
Date: June 1, 1997
Creator: Leal, L.C.; Larson, N.M.; Larson, D.C. & Hetrick, D.M.
Partner: UNT Libraries Government Documents Department

{sup 16}O neutron cross section evaluation

Description: This work has resulted from a need to compute more accurately the neutron scattering cross sections and angular distributions for {sup 16}O. Several oxygen evaluations have been performed in the past with R-Matrix theory, including ENDF/B-V and ENDF/B-VI. ENDF/B-VI is an improvement over ENDF/B-V, but still underpredicts in general the forward scattering of neutrons below 2.5 MeV. R-Matrix theory is used in describing cross sections at and near the resonance energies; but may not always be adequate in describing cross sections between resonances, especially when they are widely spaced. The optical (potential well) model of the nucleus is very good in representing cross sections that vary smoothly with energy, but not at describing all of the detailed resonance cross sections. A combination of the potential well model and R-Matrix theory was used for this work to represent cross sections with isolated resonances with large spacings between them. The total neutron cross section of oxygen-16 below 3.0 MeV has widely separated resonances and a dip in the cross section at 2.35 MeV. In the vicinity of resonances, where cross sections vary rapidly with energy, R-Matrix theory has been successful in fitting experimental data. In the region between resonances, an analytical procedure with physical basis is needed that agrees with data over a wide range of energies bracketing regions where experimental measurements are lacking.
Date: June 1, 1998
Creator: Caro, E.
Partner: UNT Libraries Government Documents Department

Rapid thermal processing of steel using high energy electron beams

Description: High energy electron beams (HEEBs) with megavolt energies represent a new generation of charged particle beams that rapidly deposit up to several hundred joules/pulse over areas on the order of a few square millimeters to 100s of square centimeters. These pulsed beams have energies in the 1 to 10 MeV range, which enables the electrons to deposit large amounts of energy deeply into the material being processed, and these beams have short pulse durations (50 ns) that can heat materials at rates as high as 10{sup 10} {degrees}C/s for a 1000 {degree}C temperature rise in the material. Lower heating rates, on the order of 10{sup 4} {degrees}C/s, can be produced by reducing the energy per pulse and distributing the total required energy over a series of sub-ms pulses, at pulse repetition frequencies (PRFs) up to several kHz. This paper presents results from materials processing experiments performed on steel with a 6 MeV electron beam, analyzes these results using a Monte Carlo transport code, and presents a first-order predictive method for estimating the peak energy deposition, temperature, and heating rate for HEEB processed steel.
Date: November 10, 1993
Creator: Elmer, J. W.; Newton, A. & Smith, C., Jr.
Partner: UNT Libraries Government Documents Department