3 Matching Results

Search Results

Advanced search parameters have been applied.

Evaluation of immobilized boronates for studies of adenine nucleotide metabolism

Description: Immobilized boronates were evaluated for studies of adenine nucleotide metabolism. These studies were performed using Affi-gel 601, a commercial boronate gel, and dihydroxyboryl Sepharose and dihydroxyboryl-Bio Rex which were synthesized in the laboratory. The studies performed included the determination of the relative binding affinity of a variety of adenine containing compounds for the three immobilized boronates under differing chromatographic conditions.
Date: August 1982
Creator: Alvarez-Gonzalez, Rafael
Partner: UNT Libraries

The Regulation of HMG-CoA Reductase by Enzyme-Lipid Interactions

Description: The temperature-dependent catalytic activity of rat liver 3-hydroxy-3 -methylglutaryl coenzyme A reductase (HMG-CoA reductase) displays the nonlinear Arrhenius behavior characteristic of many membrane-bound enzymes. A two-conformer equilibrium model has been developed to characterize this behavior. In the model, HMG-CoA reductase undergoes a conformational change from a low specific activity to a high specific activity form. This conformation change is apparently driven by a temperature-dependent phase transition of the membrane lipids. It has been found that this model accurately describes the data from diets including rat chow, low-fat, high-carbohydrate, and diets supplemented with fat, cholesterol or cholestyramine. The effects characterized by the model are consistent with the regulation of HMG-CoA reductase by enzyme-lipid interactions.
Date: May 1981
Creator: Smith, Vana L.
Partner: UNT Libraries

Opioid/Adrenergic Interaction in Regulating Canine Cardiac Function

Description: Opioid/adrenergic interactions were studied to evaluate two hypotheses: (1) naloxone potentiates the effect of epinephrine on cardiac contractility by increasing circulating epinephrine concentrations; and (2) endogenous and exogenous opioids alter left cardiac nerve stimulationinduced norepinephrine release and cardiac function. A canine isolated heart-lung preparation was used for the first study. Plasma epinephrine was determined and myocardial epinephrine uptake was calculated during intravenous epinephrine infusion. Naloxone (4 mg) was given and the epinephrine infusion was repeated. Naloxone increased cardiac contractility, coronary blood flow, and the coronary sinus epinephrine concentration. When coronary blood flow was subsequently held constant (100% above resting), naloxone increased only contractility. This result indicated that the previously observed increase in coronary sinus epinephrine was flow dependent. Corticosterone (an uptake II blocker) was employed as a positive control. Corticosterone increased the contractile response to epinephrine, but unlike naloxone, corticosterone was accompanied by a clear decrease in myocardial epinephrine uptake. The stereospecificity of the response to naloxone was investigated and (+) naloxone equaled or exceeded (-) naloxone in potentiating the inotropic effect of epinephrine. In the second study, the left cardiac nerve was isolated and electrically stimulated in intact dogs. Norepinephrine overflow gradually declined during successive control stimulations. Pretreatment with naloxone (100 Mg/kg) prevented or delayed the decline. An intracoronary dynorphin 1-9 infusion (2 nmol/min/kg for 20 minutes) reduced both norepinephrine overflow and cardiac performance, and both effects were prevented by pretreatment with naloxone (100 /xg/kg) . To summarize, naloxone potentiated the inotropic effect of infused epinephrine without altering circulating epinephrine concentrations or myocardial epinephrine uptake. This effect of naloxone was not stereospecific and probably not mediated through a traditional opiate receptor. Endogenous and exogenous opioids inhibited the left cardiac nerve stimulation-induced norepinephrine overflow, suggesting that opiate receptors may regulate cardiac excitability by modulating norepinephrine release.
Date: May 1990
Creator: Gu, Hong
Partner: UNT Libraries