572 Matching Results

Search Results

Advanced search parameters have been applied.

Shaker force measurements using voltage and current

Description: In a previous paper (Smallwood and Coleman, 1993), equations were developed which would allow the force into a test item during a vibration test to be measured using voltage and current measurements from the input to an electrodynamic shaker. To accomplish this, the voltage and current required to drive the shaker with no load and with a known mass were required. In this paper, the equations are generalized to cover the case where the measurements are made with several (at least 2) load conditions. It is not required that one of the conditions be the no load condition. The equations are written in a form where the known loads are not required to be a simple mass, but can be a complex impedance. For the case of more than two load conditions, a least squares solution is found.
Date: October 1, 1996
Creator: Smallwood, D.O.
Partner: UNT Libraries Government Documents Department

Superconducting link bus design for the accelerator project for upgrade of LHC

Description: The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.
Date: June 1, 2011
Creator: Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V. et al.
Partner: UNT Libraries Government Documents Department

Adjustable Shock Test Sled for Haversine Pulses at 250 fps

Description: New test requirements were developed by Sandia National Laboratory to simulate a regime of shock testing not previously performed at the Kansas City Plant operated by Honeywell Federal Manufacturing & Technologies. These environments were unique in that they involved amplitude of shock >1000g with relatively long pulse durations (greater 5 ms but less than 10 ms) and involved velocity changes up to 235 ft/sec. Ten months were available to develop, design, manufacture and prove-in this new capability. We designed a new shock sled to deliver this new family of shock environments in a laboratory test. The performance range of the new sled includes five specific shocks (1000 g – 8 ms, 1300 - 6 ms, 1500 g – 5.4 ms, 1950 g – 6 ms, 2250 g – 5.4 ms; all haversine shaped), and it also incorporates adjustability to accommodate new shocks within this range. These shock environments result in velocity changes ranging from 160 fps to 250 fps. The test sled accommodates test articles weighing up to 20 lbs and measuring up to 10” along any axis.
Date: May 5, 2008
Creator: Hartwig, Troy; Hower, Brent & Seaholm, Aaron
Partner: UNT Libraries Government Documents Department

Hydrostatic, uniaxial, and triaxial compression tests on unpoled "Chem-prep" PZT 95/5-2Nb ceramic within temperature range of -55 to 75 degrees C.

Description: Sandia is currently developing a lead-zirconate-titanate ceramic 95/5-2Nb (or PNZT) from chemically prepared ('chem-prep') precursor powders. Previous PNZT ceramic was fabricated from the powders prepared using a 'mixed-oxide' process. The specimens of unpoled PNZT ceramic from batch HF803 were tested under hydrostatic, uniaxial, and constant stress difference loading conditions within the temperature range of -55 to 75 C and pressures to 500 MPa. The objective of this experimental study was to obtain mechanical properties and phase relationships so that the grain-scale modeling effort can develop and test its models and codes using realistic parameters. The stress-strain behavior of 'chem-prep' PNZT under different loading paths was found to be similar to that of 'mixed-oxide' PNZT. The phase transformation from ferroelectric to antiferroelectric occurs in unpoled ceramic with abrupt increase in volumetric strain of about 0.7 % when the maximum compressive stress, regardless of loading paths, equals the hydrostatic pressure at which the transformation otherwise takes place. The stress-volumetric strain relationship of the ceramic undergoing a phase transformation was analyzed quantitatively using a linear regression analysis. The pressure (P{sub T1}{sup H}) required for the onset of phase transformation with respect to temperature is represented by the best-fit line, P{sub T1}{sup H} (MPa) = 227 + 0.76 T (C). We also confirmed that increasing shear stress lowers the mean stress and the volumetric strain required to trigger phase transformation. At the lower bound (-55 C) of the tested temperature range, the phase transformation is permanent and irreversible. However, at the upper bound (75 C), the phase transformation is completely reversible as the stress causing phase transformation is removed.
Date: October 1, 2003
Creator: Zeuch, David Henry; Montgomery, Stephen Tedford; Lee, Moo Yul & Hofer, John H.
Partner: UNT Libraries Government Documents Department

Development of Self-Expanding Idealflo (tm) Sandcontrol Technology

Description: Development of Self-Expanding Idealflo{trademark} Sandscreen Technology was a successfully executed design-by-analysis through field demonstration project. This final report is presented as a two-part progression of concept development and manufacturing activities. The first part, conceptual development activities, discusses novel specifications creation and non-linear analytical design generation. The second part, manufacturing, contains achievement related information for detailed-design, fabrication, mechanical testing, and field demonstration activities.
Date: September 30, 2007
Creator: Spray, Jeff A.
Partner: UNT Libraries Government Documents Department

The mechanical response of a uranium-nobium alloy: a comparison of cast versus wrought processing

Description: A rigorous experimentation and validation program is being undertaken to create constitutive models that elucidate the fundamental mechanisms controlling plasticity in uranium-6 wt.% niobium alloys (U-6Nb). The first, 'wrought', material produced by processing a cast ingot I'ia forging and forming into plate was studied. The second material investigated is a direct cast U-6Nb alloy. The purpose of the investigation is to detennine the principal differences, or more importantly, similarities, between the two materials due to processing. It is well known that parameters like grain size, impurity size and chemistry affect the deformation and failure characteristics of materials. Metallography conducted on these materials revealed that the microstructures are quite different. Characterization techniques like tension, compression, and shear were performed to find the principal differences between the materials as a function of stress state. Dynamic characterization using a split Hopkinson pressure bar in conjunction with Taylor impact testing was conducted to derive and thereafter validate constitutive material models. The Mechanical Threshold Strength Model is shown to accurately capture the constitutive response of these materials and Taylor cylinder tests are used to provide a robust way to verify and validate the constitutive model predictions of deformation by comparing finite element simulations with the experimental results. The primary differences between the materials will be described and predictions about material behavior will be made.
Date: January 1, 2009
Creator: Cady, Carl M; Gray, Ill, George T; Cerreta, Ellen K; Aikin, Robert M; Chen, Shuh - Rong; Trujillo, Carl P et al.
Partner: UNT Libraries Government Documents Department

Eight plane IPND mechanical testing.

Description: A mechanical test of an 8 plane IPND mechanical prototype, which was constructed using extrusions from the testing/tryout of the 16 cell prototype extrusion die in Argonne National Laboratory, was conducted. There were 4 vertical and 4 horizontal planes in this 8 plane IPND prototype. Each vertical plane had four 16 cell extrusions, while each horizontal plane had six 16 cell extrusions. Each plane was glued together using the formulation of Devcon adhesive, Devcon 60. The vertical extrusions used in the vertical planes shares the same dimensions as the horizontal extrusions in the horizontal planes with the average web thickness of 2.1 mm and the average wall thickness of 3.1 mm. This mechanical prototype was constructed with end-seals on the both ends of the vertical extrusions. The gaps were filled with epoxy between extrusions and end-seals. The overall dimension of IPND is 154.8 by 103.1 by 21.7 inches with the weight of approximately 1200 kg, as shown in a figure. Two similar mechanical tests of 3 layer and 11 layer prototypes have been done in order to evaluate the strength of the adhesive joint between extrusions in the NOvA detector. The test showed that the IPND prototype was able to sustain under the loading of weight of itself and scintillator. Two FEA models were built to verify the measurement data from the test. The prediction from FEA slice model seems correlated reasonably well to the test result, even under a 'rough' estimated condition for the wall thickness (from an untuned die) and an unknown property of 'garage type' extrusion. A full size of FEA 3-D model also agrees very well with the test data from strain gage readings. It is worthy to point out that the stress distribution of the structure is predominantly determined by the internal pressure, while the ...
Date: March 18, 2008
Creator: Zhao, A.; Guarino, V.; Wood, K.; Nephew, T.; Ayres, D.; Lee, A. et al.
Partner: UNT Libraries Government Documents Department

Characterization of Min-K TE-1400 Thermal Insulation

Description: Min-K 1400TE insulation material was characterized at Oak Ridge National Laboratory for use in structural applications under gradient temperature conditions. Initial compression testing was performed at room temperature at various loading rates ranging between 5 and 500 psi/hour (≈35 and 3500 kPa/hour) to determine the effect of sample size and test specimen geometry on the compressive strength of Min-K. To determine the loading rates that would be used for stress relaxation testing, compression tests were next carried out at various levels followed by stress relaxation under constant strain at temperatures of 650, 850, and 900oC. Additional high temperature compression testing was performed with samples loaded at a rate of 53 psi/hour (365 kPa/hour) in three load steps of 50, 100 and 200 psi (345, 690, and 1380 kPa) with quick unload/load cycles between steps and followed by a hold period in load control (3 to 100 hours) to allow for sample creep. Testing was carried out at 190, 382, 813, and 850oC. Isothermal stress relaxation testing was performed at temperatures of 190, 382, 813, and 850oC and initial loads of 100 and 200 psi (690 and 1380 kPa). Gradient stress relaxation testing was intended to be performed at temperatures of 850/450oC and 450/190oC with initial loads of 100 or 200 psi (690 and 1380 kPa) performed under constant strain utilizing a twelve-step loading scheme with loading every half hour at a rate of 5.56% strain/hour.
Date: July 1, 2008
Creator: Hemrick, James Gordon; Lara-Curzio, Edgar & King, James
Partner: UNT Libraries Government Documents Department

Interlaminar strains at the free edge of a hole in laminated composites: An experimental study

Description: Free-edge effects in laminated composite materials were studied experimentally using high-sensitivity moire interferometry. Six laminates from two material systems were tested in uniaxial compression on an electro-mechanical testing machine. Interlaminar deformations were measured on a ply-by-ply basis at the straight free-edge and, for the first time, on the cylindrical surface of a hole. Strain distributions were determined with high fidelity for the hole surface and the straight free edge of the thick composite panels. Comparisons were made on a ply-by-ply basis for the transverse and tangential strains at the horizontal centerline of the hole (90{degree} location) and the corresponding plies at the straight boundaries.
Date: December 31, 1993
Creator: Boeman, R. G.
Partner: UNT Libraries Government Documents Department

Fracture testing and analysis of adhesively bonded joints for automotive applications

Description: In 1992, the Oak Ridge National Laboratory (ORNL) began a cooperative effort with the Automotive Composites Consortium (ACC) to conduct research and development that would overcome technological hurdles to the adhesive bonding of current and future automotive materials. This effort is part of a larger Department of Energy (DOE) program to promote the use of lighter weight materials in automotive structures for the purpose of increasing fuel efficiency and reducing environmental pollutant emissions. In accomplishing this mission, the bonding of similar and dissimilar materials was identified as being of primary importance to the automotive industry since this enabling technology would give designers the freedom to choose from an expanded menu of low mass materials for component weight reduction. This paper concentrates on the details of developing accurate fracture test methods for adhesively bonded joints in the automotive industry. The test methods being developed are highly standardized and automated so that industry suppliers will be able to pass on reliable data to automotive designers in a timely manner. Mode I fracture tests have been developed that are user friendly and automated for easy data acquisition, data analysis, test control and test repeatability. The development of this test is discussed. In addition, materials and manufacturing issues are addressed which are of particular importance when designing adhesive and composite material systems.
Date: December 31, 1994
Creator: Boeman, R.G. & Warren, C.D.
Partner: UNT Libraries Government Documents Department

Ceramic powder compaction

Description: With the objective of developing a predictive model for ceramic powder compaction we have investigated methods for characterizing density gradients in ceramic powder compacts, reviewed and compared existing compaction models, conducted compaction experiments on a spray dried alumina powder, and conducted mechanical tests and compaction experiments on model granular materials. Die filling and particle packing, and the behavior of individual granules play an important role in determining compaction behavior and should be incorporated into realistic compaction models. These results support the use of discrete element modeling techniques and statistical mechanics principals to develop a comprehensive model for compaction, something that should be achievable with computers with parallel processing capabilities.
Date: December 31, 1995
Creator: Glass, S.J.; Ewsuk, K.G. & Mahoney, F.M.
Partner: UNT Libraries Government Documents Department

A multiaxial viscoplastic model for advanced Si{sub 3}N{sub 4} ceramics

Description: A uniaxial creep/creep rupture model developed previously based on results obtained from uniaxial tensile creep tests of an advanced Si{sub 3}N{sub 4} ceramic has been refined and upgraded in multiaxial form to facilitate general applications. Severity of asymmetric creep behavior in tension compared to that in compression observed in recent experimental results mandates this revision. The tensorial formulation follows the plasticity theories developed for soils. Material sensitivity to pressure, asymmetry between tension and compression, changes of material structure due to hardening of grain boundary phase, and deformation induced volumetric swelling attributable to cavity and void formations have all been considered. Provisions for such features in the proposed multiaxial model are shown to have improved modeling flexibility.
Date: April 1, 1996
Creator: Ding, J.L.; Liu, K.C. & Brinkman, C.R.
Partner: UNT Libraries Government Documents Department

Variability of modal parameters measured on the Alamosa Canyon Bridge

Description: A significant amount of work has been reported in technical literature regarding the use of changes in modal parameters to identify the location and extent of damage in structures. Curiously absent, and critically important to the practical implementation of this work, is an accurate characterization of the natural variability of these modal parameters caused by effects other than damage. To examine this issue, a two-lane, seven-span, composite slab-on-girder bridge near the town of Truth or Consequences in southern New Mexico was tested several times over a period of nine months. Environmental effects common to this location that could potentially produce changes in the measured modal properties include changes in temperature, high winds, and changes to the supporting soil medium. In addition to environmental effects, variabilities in modal testing procedures and data reduction can also cause changes in the identified dynamic properties of the structure. In this paper the natural variability of the frequencies and mode shapes of the Alamosa Canyon bridge that result from changes in time of day when the test was performed, amount of traffic, and environmental conditions will be discussed. Because this bridge has not been in active use throughout the testing period, it is assumed that any change in the observed modal properties are the result of the factors listed above rather than deterioration of the structure itself.
Date: December 31, 1996
Creator: Farrar, C.R.; Doebling, S.W.; Cornwell, P.J. & Straser, E.G.
Partner: UNT Libraries Government Documents Department

Results of 1.0-L sample bottle pressurization tests for the pit burst experiment

Description: Pressurization tests were performed on a 1.0-L sample bottle to verify operational aspects of the pit burst experimental test apparatus. The 1.0-L sample bottle was selected because of its known geometry, certified performance and ready availability. Redundant strain gage instrumentation was installed on the test sample enabling evaluation of the repeatability and consistency of data acquisition. Test results were compared with analytical model predictions to evaluate instrumentation accuracy.
Date: February 1997
Creator: Veirs, K. D.; Prenger, F. C.; Harradine, D.M. & McFarlan, J. T.
Partner: UNT Libraries Government Documents Department

Methods for Predicting More Confident Lifetimes of Seals in Air Environments

Description: We have been working for many years to develop improved methods for predicting the lifetimes of polymers exposed to air environments and have recently turned our attention to seal materials. This paper describes an extensive study on a butyl material using elevated temperature compression stress-relaxation (CSR) techniques in combination with conventional oven aging exposures. The results initially indicated important synergistic effects when mechanical strain is combined with oven aging, as well as complex, non-Arrhenius behavior of the CSR results. By combining modeling and experiments, we show that diffusion-limited oxidation (DLO) anomalies dominate traditional CSR experiments. A new CSR approach allows us to eliminate DLO effects and recover Arrhenius behavior. Furthermore, the resulting CSR activation energy (E{sub a}) from 125 C to 70 C is identical to the activation energies for the tensile elongation and for the oxygen consumption rate of unstrained material over similar temperature ranges. This strongly suggests that the same underlying oxidation reactions determine both the unstrained and strained degradation rates. We therefore utilize our ultrasensitive oxygen consumption rate approach down to 23 C to show that the CSR E{sub a} likely remains unchanged when extrapolated below 70 C, allowing very confident room temperature lifetime predictions for the butyl seal.
Date: March 5, 1999
Creator: Celina, M.; Gillen, K.T. & Keenan, M.R.
Partner: UNT Libraries Government Documents Department

Fracture toughness of Alloy 600 and EN82H weld in air and water

Description: The fracture toughness of Alloy 600 and its weld, EN82H, was characterized in 54 C to 338 C air and hydrogenated water. Elastic-plastic J{sub IC} testing was performed due to the inherent high toughness of these materials. Alloy 600 exhibited excellent fracture toughness under all test conditions. While EN82H welds displayed excellent toughness in air and high temperature water, a dramatic toughness degradation occurred in water at temperatures below 149 C. Comparison of the cracking response in low temperature water with that for hydrogen-precharged specimens tested in air demonstrated that the loss in toughness is due to a hydrogen-induced intergranular cracking mechanism. At loading rates about approx. 1000 MPa {radical}m/h, the toughness in low temperature water is improved because there is insufficient time for hydrogen to embrittle grain boundaries. Electron fractographic examinations were performed to correlate macroscopic properties with key microstructural features and operative fracture mechanisms.
Date: June 1, 1999
Creator: Mills, W.J. & Brown, C.M.
Partner: UNT Libraries Government Documents Department

Microstructural changes in eutectic tin-lead alloy due to severe bending

Description: Severe plastic deformation in an eutectic tin-lead alloy is studied by imposing fast bending at room temperature, in an attempt to examine the microstructural response in the absence of thermally activated diffusion processes. A change in microstructure due to this purely mechanically imposed load is observed: the tin-rich matrix phase appears to be extruded out of the narrow region between neighboring layers of the lead-rich phase and alterations in the colony structure occur. A micromechanism is proposed to rationalize the experimental observations.
Date: February 29, 2000
Partner: UNT Libraries Government Documents Department

Hall-Petch hardening in pulsed laser deposited nickel and copper thin films

Description: Very fine-grained Ni and Cu films were formed using pulsed laser deposition on fused silica substrates. The grain sizes in the films were characterized by electron microscopy, and the mechanical properties were determined by ultra-low load indentation, with finite-element modeling used to separate the properties of the layers from those of the substrate. Some Ni films were also examined after annealing to 350 and 450 C to enlarge the grain sizes. These preliminary results show that the observed hardnesses are consistent with a simple extension of the Hall-Petch relationship to grain sizes as small as 11 nm for Ni and 32 nm for Cu.
Date: January 3, 2000
Creator: Knapp, J.A.; Follstaedt, D.M.; Banks, J.C. & Myers, S.M. Jr.
Partner: UNT Libraries Government Documents Department

Mechanical response of cross-ply Si{sub 3}N{sub 4}/BN fibrous monoliths under uniaxial and biaxial loadings

Description: Mechanical properties of hot-pressed Si{sub 3}N{sub 4}/BN fibrous monoliths (FMs) were evaluated under ambient conditions in four-point and biaxial flexure modes. Effects of cell orientation, 0{degree}/90{degree} and {+-}45{degree}, on elastic modulus and fracture strength of the FMs were investigated. Fracture surfaces were examined by scanning electron microscopy.
Date: March 1, 2000
Creator: Singh, D.; Cruse, T. A.; Hermanson, D. J.; Goretta, K. C.; Zok, F. W. & McNulty, J. C.
Partner: UNT Libraries Government Documents Department

Correlation of Nanoindentation and Conventional Mechanical Property Measurements

Description: A series of model ferritic alloys and two commercial steels were used to develop a correlation between tensile yield strength and nano-indentation hardness measurements. The NanoIndenter-II{reg_sign} was used with loads as low as 0.05 g{sub f} (0.490 mN) and the results were compared with conventional Vickers microhardness measurements using 200 and 500 g{sub f} (1.96 and 4.90 N) loads. Two methods were used to obtain the nanohardness data: (1) constant displacement depth and (2) constant load. When the nanohardness data were corrected to account for the difference between projected and actual indenter contact area, good correlation between the Vickers and nanohardness measurements was obtained for hardness values between 0.7 and 3 GPa. The correlation based on constant nanoindentation load was slightly better than that based on constant nanoindentation displacement. Tensile property measurements were made on these same alloys, and the expected linear relationship between Vickers hardness and yield strength was found, leading to a correlation between measured changes in nanohardness and yield strength changes.
Date: February 14, 2001
Creator: Rice, P. M.
Partner: UNT Libraries Government Documents Department

Linear Corrugating - Final Technical Report

Description: Linear Corrugating is a process for the manufacture of corrugated containers in which the flutes of the corrugated medium are oriented in the Machine Direction (MD) of the several layers of paper used. Conversely, in the conventional corrugating process the flutes are oriented at right angles to the MD in the Cross Machine Direction (CD). Paper is stronger in MD than in CD. Therefore, boxes made using the Linear Corrugating process are significantly stronger-in the prime strength criteria, Box Compression Test (BCT) than boxes made conventionally. This means that using Linear Corrugating boxes can be manufactured to BCT equaling conventional boxes but containing 30% less fiber. The corrugated container industry is a large part of the U.S. economy, producing over 40 million tons annually. For such a large industry, the potential savings of Linear Corrugating are enormous. The grant for this project covered three phases in the development of the Linear Corrugating process: (1) Production and evaluation of corrugated boxes on commercial equipment to verify that boxes so manufactured would have enhanced BCT as proposed in the application; (2) Production and evaluation of corrugated boxes made on laboratory equipment using combined board from (1) above but having dual manufactures joints (glue joints). This box manufacturing method (Dual Joint) is proposed to overcome box perimeter limitations of the Linear Corrugating process; (3) Design, Construction, Operation and Evaluation of an engineering prototype machine to form flutes in corrugating medium in the MD of the paper. This operation is the central requirement of the Linear Corrugating process. Items I and II were successfully completed, showing predicted BCT increases from the Linear Corrugated boxes and significant strength improvement in the Dual Joint boxes. The Former was constructed and operated successfully using kraft linerboard as the forming medium. It was found that tensile strength and ...
Date: May 23, 2000
Creator: Chapman, Lloyd
Partner: UNT Libraries Government Documents Department