19 Matching Results

Search Results

Advanced search parameters have been applied.

Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator

Description: Topological insulators are characterized by a massless Dirac surface state and a bulk energy gap. An insulating massive Dirac fermion state is predicted to occur if the breaking of the time reversal symmetry opens an energy gap at the Dirac point, provided that the Fermi-energy resides inside both the surface and bulk gaps. By introducing magnetic dopants into the three dimensional topological insulator Bi{sub 2}Se{sub 3} to break the time reversal symmetry, we observed the formation of a massive Dirac fermion on the surface; simultaneous magnetic and charge doping furthermore positioned the Fermi-energy inside the Dirac gap. The insulating massive Dirac Fermion state thus obtained may provide a tool for studying a range of topological phenomena relevant to both condensed matter and particle physics.
Date: May 20, 2011
Creator: Chen, Y. L.; Chu, J.-H.; Analytis, J. G.; Liu, Z. K.; Igarashi, K.; Kuo, H.-H. et al.
Partner: UNT Libraries Government Documents Department

Subband Structure of a Two-Dimensional Electron Gas Formed at the Polar Surface of the Strong Spin-Orbit Perovskite KTaO3

Description: We demonstrate the formation of a two-dimensional electron gas (2DEG) at the (100) surface of the 5d transition-metal oxide KTaO{sub 3}. From angle-resolved photoemission, we find that quantum confinement lifts the orbital degeneracy of the bulk band structure and leads to a 2DEG composed of ladders of subband states of both light and heavy carriers. Despite the strong spin-orbit coupling, we find no experimental signatures of a Rashba spin splitting, which has important implications for the interpretation of transport measurements in both KTaO{sub 3}- and SrTiO{sub 3}-based 2DEGs. The polar nature of the KTaO{sub 3}(100) surface appears to help mediate formation of the 2DEG as compared to non-polar SrTiO{sub 3}(100).
Date: March 1, 2012
Creator: King, P.D.C.
Partner: UNT Libraries Government Documents Department

What Coexists with the Ferromagnetic Metallic Phase in Manganites?

Description: Colossal magnetoresistance, whereby the application of a magnetic field reduces the resistivity of a manganite by orders of magnitude, is generally believed to occur because of coexisting phases. Development of a complete theory to explain the phenomenon requires that the exact nature of these phases be known. We used resonant elastic soft x-ray scattering to examine the superlattice order that exists in La{sub 0.35}Pr{sub 0.275}Ca{sub 0.375}MnO{sub 3} above and below the Curie temperature. By measuring the resonance profile of the scattered x-rays at different values of q, we disentangle the contributions of orbital order and antiferromagnetism to the scattering signal above the Curie temperature. Below the Curie temperature, we see no signal from orbital order, and only antiferromagnetism coexists with the dominant ferromagnetic metallic phase.
Date: July 25, 2012
Creator: Burkhardt, Mark H.; Hossain, M.A.; Sarkar, S.; Achkar, A.J.; Hawthorn, D.G.; Sutarto, R. et al.
Partner: UNT Libraries Government Documents Department

Shubnikov-de Haas Oscillations in the Bulk Rashba Semiconductor BiTeI

Description: Bulk magnetoresistance quantum oscillations are observed in high quality single crystal samples of BiTeI. This compound shows an extremely large internal spin-orbit coupling, associated with the polarity of the alternating Bi, Te, and I layers perpendicular to the c-axis. The corresponding areas of the inner and outer Fermi surfaces around the A-point show good agreement with theoretical calculations, demonstrating that the intrinsic bulk Rashba-type splitting is nearly 360 meV, comparable to the largest spin-orbit coupling generated in heterostructures and at surfaces.
Date: July 11, 2012
Creator: Bell, C.; Bahramy, M.S.; Murakawa, H.; Checkelsky, J.G.; Arita, R.; Kaneko, Y. et al.
Partner: UNT Libraries Government Documents Department

Imaging the First-Order Magnetic Transition in La0.35Pr0.275Ca0.375MnO3

Description: The nature of the ferromagnetic, charge, orbital, and antiferromagnetic order in La{sub 0.35}Pr{sub 0.275}Ca{sub 0.375}MnO{sub 3} (LPCMO) on the nano and micro scale was investigated by photoemission electron microscopy (PEEM) and resonant elastic soft x-ray scattering (RSXS). The structure of the ferromagnetic domains around the Curie temperature T{sub C} indicates that they nucleate under a high degree of lattice strain, which is brought about by the charge, orbital, and antiferromagnetic order. The combined temperature-dependent PEEM and RSXS measurements suggest that the lattice distortions associated with charge and orbital order are glassy in nature and that phase separation is driven by the interplay between it and the more itinerant charge carriers associated with ferromagnetic metallic order, even well below T{sub C}.
Date: May 1, 2012
Creator: Burkhardt, Mark
Partner: UNT Libraries Government Documents Department

The Dependence of the Oxidation Enhancement of InP(100) Surface on the Coverage of the Adsorbed Cs

Description: We report the oxidation of the InP(100) surface promoted by adsorbed Cs by synchrotron radiation photoemission. Oxygen exposure causes reduction of the charge transferred to the InP substrate from Cs and the growth of indium oxide and phosphorous oxide. The oxide growth displays a clear dependence on the Cs coverage. The oxidation of phosphorous is negligible up to 1000 L of O{sub 2} exposure when the Cs coverage is less than half a monolayer (ML), but the formation of the second half monolayer of Cs greatly accelerates the oxidation. This different enhancement of the InP oxidation by the first and the second half monolayer of Cs is due to the double layer structure of the adsorbed Cs atoms, and consequently the higher 6s electron density in the Cs atoms when Cs coverage is larger than 0.5 ML.
Date: June 7, 2010
Creator: Sun, Yun
Partner: UNT Libraries Government Documents Department

Imaging Nonequilibrium Atomic Vibrations with X-ray Diffuse Scattering

Description: We use picosecond x-ray diffuse scattering to image the nonequilibrium vibrations of the lattice following ultrafast laser excitation. We present images of nonequilibrium phonons in InP and InSb throughout the Brillouin-zone which remain out of equilibrium up to nanoseconds. The results are analyzed using a Born model that helps identify the phonon branches contributing to the observed features in the time-resolved diffuse scattering. In InP this analysis shows a delayed increase in the transverse acoustic (TA) phonon population along high-symmetry directions accompanied by a decrease in the longitudinal acoustic (LA) phonons. In InSb the increase in TA phonon population is less directional.
Date: March 3, 2011
Creator: Trigo, M.; Chen, J.; Vishwanath, V. H.; Sheu, Y. M.; Graber, T.; Henning, R. et al.
Partner: UNT Libraries Government Documents Department

Two-dimensional Vortex Behavior in Highly Underdoped YBa_2Cu_3O_{6+x} Observed byScanning Hall Probe Microscopy

Description: We report scanning Hall probe microscopy of highly underdoped superconducting YBa{sub 2}Cu{sub 3}O{sub 6+z} with T{sub c} ranging from 5 to 15 K which showed distinct flux bundles with less than one superconducting flux quantum ({Phi}{sub 0}) through the sample surface. The sub-{Phi}{sub 0} features occurred more frequently for lower T{sub c}, were more mobile than conventional vortices, and occurred more readily when the sample was cooled with an in-plane field component. We show that these features are consistent with kinked stacks of pancake vortices.
Date: April 22, 2008
Creator: Guikema, J.W.; Bluhm, Hendrik; /Stanford U., Appl. Phys. Dept.; Bonn, D.A.; Liang, Ruixing; Hardy, W.N. et al.
Partner: UNT Libraries Government Documents Department

Ultrafast Photovoltaic Response in Ferroelectric Nanolayers

Description: We show that light drives large-amplitude structural changes in thin films of the prototypical ferroelectric PbTiO3 via direct coupling to its intrinsic photovoltaic response. Using time-resolved x-ray scattering to visualize atomic displacements on femtosecond timescales, photoinduced changes in the unit-cell tetragonality are observed. These are driven by the motion of photogenerated free charges within the ferroelectric and can be simply explained by a model including both shift and screening currents, associated with the displacement of electrons first antiparallel to and then parallel to the ferroelectric polarization direction.
Date: February 15, 2012
Creator: Daranciang, Dan
Partner: UNT Libraries Government Documents Department

Resource Letter on Stimulated Inelastic X-ray Scattering at an XFEL

Description: At sufficient X-ray intensity, stimulated effects in inelastic scattering will become important. These coherent, non-linear optical phenomena may be used to impulsively produce a high degree of collective excitation in, for example, correlated electron materials, suitable for performing ultrafast time-resolved spectroscopy. This Resource Letter collects information on fundamental aspects of stimulated X-ray scattering and evaluates the prospect for successful experiments at a present or future X-ray free electron laser (XFEL) facility.
Date: September 2, 2010
Creator: Patterson, Bruce
Partner: UNT Libraries Government Documents Department

Emergent Phenomena at Oxide Interfaces

Description: Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r {yields} -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t {yields} -t. In quantum mechanics, the time-evolution of the wave-function {Psi} is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin operator changes sign with T-operation. (iii) Gauge symmetry (G), which is ...
Date: February 16, 2012
Creator: Hwang, H.Y.
Partner: UNT Libraries Government Documents Department