425 Matching Results

Search Results

Advanced search parameters have been applied.

Plutonium dissolution process

Description: A two-step process for dissolving Pu metal is disclosed in which two steps can be carried out sequentially or simultaneously. Pu metal is exposed to a first mixture of 1.0-1.67 M sulfamic acid and 0.0025-0.1 M fluoride, the mixture having been heated to 45-70 C. The mixture will dissolve a first portion of the Pu metal but leave a portion of the Pu in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alternatively, nitric acid between 0.05 and 0.067 M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution is diluted with nitrogen.
Date: January 1, 1994
Creator: Vest, M.A.; Fink, S.D.; Karraker, D.G.; Moore, E.N. & Holcomb, H.P.
Partner: UNT Libraries Government Documents Department

Simteche Hydrate CO2 Capture Process

Description: As a result of an August 4, 2005 project review meeting held at Los Alamos National Laboratory (LANL) to assess the project's technical progress, Nexant/Simteche/LANL project team was asked to meet four targets related to the existing project efforts. The four targets were to be accomplished by the September 30, 2006. These four targets were: (1) The CO{sub 2} hydrate process needs to show, through engineering and sensitivity analysis, that it can achieve 90% CO{sub 2} capture from the treated syngas stream, operating at 1000 psia. The cost should indicate the potential of achieving the Sequestration Program's cost target of less than 10% increase in the cost of electricity (COE) of the non-CO{sub 2} removal IGCC plant or demonstrate a significant cost reduction from the Selexol process cost developed in the Phase II engineering analysis. (2) The ability to meet the 20% cost share requirement for research level efforts. (3) LANL identifies through equilibrium and bench scale testing a once-through 90% CO{sub 2} capture promoter that supports the potential to achieve the Sequestration Program's cost target. Nexant is to perform an engineering analysis case to verify any economic benefits, as needed; no ETM validation is required, however, for this promoter for FY06. (4) The CO{sub 2} hydrate once-through process is to be validated at 1000 psia with the ETM at a CO{sub 2} capture rate of 60% without H{sub 2}S. The performance of 68% rate of capture is based on a batch, equilibrium data with H{sub 2}S. Validation of the test results is required through multiple runs and engineering calculations. Operational issues will be solved that will specifically effect the validation of the technology. Nexant was given the primary responsibility for Target No.1, while Simteche was mainly responsible for Target No.2; with LANL having the responsibility of Targets No.3 and ...
Date: September 30, 2006
Creator: Laboratory, Nexant and Los Alamos National
Partner: UNT Libraries Government Documents Department

High temperature electrochemical polishing of H{sub 2}S from coal gasification process streams. Quarterly progress report, July 1, 1995--September 30, 1995

Description: Coal may be used to generate electrical energy by any of several processes, most of which involve combustion or gasification. Combustion in a coal-fired boiler and power generation using a steam-cycle is the conventional conversion method; however total energy conversion efficiencies for this type of process are only slightly over 30%. Integration of a gas-cycle in the process (combined cycle) may increase the total conversion efficiency to 40%. Conversion processes based on gasification offer efficiencies above 50%. H{sub 2}S is the predominant gaseous contaminant in raw coal gas. This process is concerned with the removal of H{sub 2} from coal gas through an electrochemical membrane technology.
Date: March 1, 1996
Creator: Winnick, J.
Partner: UNT Libraries Government Documents Department


Description: During Year I this project has been focused on these two topic areas: (i) understanding comprehensively the CO{sub 2} affinity vs temperature, reversibility of CO{sub 2} affinity, and the role of water in order to select an optimum hydrotalcite composition for membrane preparation, and (ii) developing a membrane synthesis protocol for depositing the hydrotalcite material into a commercially available ceramic membrane from us. This annual report documents the progress we have made in these areas. In summary, the Year I study has demonstrated the technical feasibility of preparing a hydrotalcite. The proposed membrane synthesis protocol will be refined and optimized in Year II. In addition, surface analysis techniques employing FTIR and DRIFTS have been developed. These techniques have been applied to a hydrotalcite model compound to demonstrate our ability to screen hydrotalcite materials in terms of its composition and % of cation substitution. These techniques will be utilized in Year II to formulate an optimized hydrotalcite candidate for preparing a membrane with maximized CO{sub 2} transport at the proposed process condition.
Date: September 30, 2001
Creator: Liu, Paul K.T.
Partner: UNT Libraries Government Documents Department

Mercury recovery results of microwave digested tritium facility pump oil

Description: This report is a follow up of work done earlier this year and recorded in document WSRC-RP-97-322. The scope of this document is to demonstrated the viability of digesting two non-radioactive Tritium facility pump oils, Welch Duoseal and Spindura, neat and spiked with low-level mercury to determine completeness of digestion and recoverability of mercury. As noted in document WSRC-RP-97-322 a microwave digestion methodology was developed with CEM`s ultimate digestion vessel system (UDV) and is the technique used for the follow up task of digesting the above mention pump oils for the preparatory step of cold-vapor mercury analysis.All analytical development for this project was performed at TNX. The determination of the mercury concentration in each digested sample was by cold vapor atomic absorption. The instrument used was a Varian SpectrAA 800 with a vapor generation attachment. This flameless AA procedure is a physical method based on the absorption of radiation at 253.7 nm of mercury vapor. Organo-mercury compounds will not respond to the cold vapor atomic absorption technique, therefore, to acquire a total mercury value it is necessary for a complete digestion to oxidize and convert the organo-mercury species to the mercuric ion.
Date: September 30, 1997
Creator: Whitaker, M.J. & Clymire, J.W.
Partner: UNT Libraries Government Documents Department

Reclamation and reuse of Freon in total petroleum hydrocarbon analyses

Description: At the Savannah River Technology Center (SRTC), we have successfully demonstrated the use of a solvent recycling system to reclaim spent Freon solvent in total petroleum hydrocarbon (TPH) analyses of radioactive samples. A wide variety of sample types including ground water, organics, laboratory waste, process control, sludge, soils, and others are received by our lab for total petroleum hydrocarbon analysis. This paper demonstrates the successful use of a commercially available carbon bed recycle system which we modified to enable the recovery of 95-98 percent of the radioactive contaminated Freon. This system has been used successfully in our lab for the past three years.
Date: December 31, 1997
Creator: Ekechukwu, A.A. & Young, J.E.
Partner: UNT Libraries Government Documents Department

Method for recovering materials from waste

Description: A method for recovering metals from metals-containing wastes, a vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800{degrees}C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1000--1550{degrees}C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.
Date: January 1, 1994
Creator: Wicks, G.G.; Clark, D.E. & Schulz, R.L.
Partner: UNT Libraries Government Documents Department

Clean option: Berkeley Pit water treatment and resource recovery strategy

Description: The US Department of Energy (DOE), Office of Technology Development, established the Resource Recovery Project (RRP) in 1992 as a five-year effort to evaluate and demonstrate multiple technologies for recovering water, metals, and other industrial resources from contaminated surface and groundwater. Natural water resources located throughout the DOE complex and the and western states have been rendered unusable because of contamination from heavy metals. The Berkeley Pit, a large, inactive, open pit copper mine located in Butte, Montana, along with its associated groundwater system, has been selected by the RRP for use as a feedstock for a test bed facility located there. The test bed facility provides the infrastructure needed to evaluate promising technologies at the pilot plant scale. Data obtained from testing these technologies was used to assess their applicability for similar mine drainage water applications throughout the western states and at DOE. The objective of the Clean Option project is to develop strategies that provides a comprehensive and integrated approach to resource recovery using the Berkeley Pit water as a feedstock. The strategies not only consider the immediate problem of resource recovery from the contaminated water, but also manage the subsequent treatment of all resulting process streams. The strategies also employ the philosophy of waste minimization to optimize reduction of the waste volume requiring disposal, and the recovery and reuse of processing materials.
Date: September 1, 1995
Creator: Gerber, M.A.; Orth, R.J.; Elmore, M.R. & Monzyk, B.F.
Partner: UNT Libraries Government Documents Department

A Summary of Experiments in Converting Copper Oxide Process Regenerator Off-Gases to Elemental Sulfur, CRADA 97-F006, Final Report

Description: Sorbent Technologies Corporation (Sorbtech) of Twinsburg, Ohio has developed a new technology for converting SO{sub 2}-rich gas streams directly to elemental sulfur. Key to the technology is a special catalyst that promotes the reaction of SO{sub 2} with reformed natural gas. The technology evolved from earlier flue-gas desulfurization (FGD) work that Sorbtech engineers performed in the late 1980's. In 1995, with U.S. Department of Energy (DOE) support, Sorbtech designed and constructed a larger, skid-mounted pilot-test unit suitable for demonstrating the new technology in field tests. This Report summarizes months of preparation work and eight days of testing that were performed at FETC'S facilities during late September and early October, 1997. On the basis of the results of this phase of the project, the following conclusions were made: (1) The chemistry of the new technology was well proven and demonstrated at FETC. The overall S0{sub 2}-to-elemental sulfur yields were typically in the range of 93 to 98 percent. (The project goal was 95 percent, so the goal was exceeded). (2) Sulfur selectivity values, indicating the tendency of S0{sub 2} to be converted to elemental sulfur in preference to H{sub 2}S or COS, were typically in the range of 98 to 100 percent. (3) Bright yellow sulfur of high quality was produced at FETC. (4) The FETC regenerator exhaust gas presented no processing difficulties. Swings in the level of methane in the exhaust gas were handled with relative ease. (5) With the exception of the water condenser, all system components performed well. (6) Condensing of the sulfur after its production was a serious problem at FETC. Solid sulfur deposits built up in the process-gas lines at several locations in the system. Clogging of the lines necessitated terminating runs typically after 2 to 4 hours of operation. Clogging problems were most severe in ...
Date: January 22, 1999
Creator: Cianciolo, Brian C.; Oehlberg, Richard J. & Nelson, Sidney G.
Partner: UNT Libraries Government Documents Department

Polymer filtration: A new technology for selective metals recovery

Description: Polymer Filtration (PF) was evaluated for the recovery of electroplating metal ions (zinc and nickel) from rinse waters. Polymer Filtration combines the use of water-soluble metal-binding polymers and ultrafiltration to concentrate metal ions from dilute rinse water solutions. The metal ions are retained by the polymers; the smaller, unbound species freely pass through the ultrafiltration membrane. By using this process the ultrafiltered permeate more than meets EPA discharge limits. The metal ions are recovered from the concentrated polymer solution by pH adjustment using diafiltration and can be recycled to the original electroplating baths with no deleterious effects on the test panels. Metal-ion recovery is accomplished without producing sludge.
Date: April 1, 1995
Creator: Smith, B.F.; Robison, T.W.; Cournoyer, M.E.; Wilson, K.V.; Sauer, N.N.; Mullen, K.I. et al.
Partner: UNT Libraries Government Documents Department

Process logic flow diagram write up for the Advanced Recovery and Integrated Extraction System (ARIES) facility

Description: The Department of Energy Office of Fissile Materials Disposition (DOE-MD) is planning a facility to disassemble pits and convert the plutonium in the pits into a form suitable for international inspection. The facility, called the Advanced Recovery and Integrated Extraction System (ARIES) Facility, must handle much of the 38.2 metric tons of plutonium declared excess to national security needs in ten years of operation. A process logic flow diagram for the ARIES Facility is presented here. This flow diagram is based on and supported by a library of fact sheets on topics that impact the design of the facility. Developing the flow diagram raised issues that significantly impact the design of the facility. These issues are discussed later in this document, and for some issues, discussed in greater detail in the appropriate fact sheets. The flow diagram is designed to show requirements that dictate the need for space and/or equipment. In physically designing the facility, the same space or equipment may be used to meet several requirements. The flow diagram merely shows the activities that need to occur to meet requirements for the facility. The flow diagram is not associated with any DOE site. The requirements shown on the flow diagram may be met by an existing facilities at a given site. The flow diagram and this write up do not contain a great deal of detail on how each step in the diagram is performed. At this stage of design, the flow diagram merely identifies the need for the activity. Examples for some of the activities are given in the appropriate fact sheet. How the steps are performed becomes more defined as the design of the facility progresses.
Date: May 1, 1997
Creator: Zygmunt, S.J.
Partner: UNT Libraries Government Documents Department

Polychlorodibenzo-p-dioxin and polychlorodibenzo-furan removal and destruction.

Description: This report provides a short summary of technologies used to destroy or separate dioxins/furans from environmental samples. It is meant as a resource for developing a technology employing magnetic particles as an engineering vehicle for large-scale, cost-effective destruction of dioxins/furans in fresh waters or sludges/soils.
Date: September 30, 2003
Creator: Patel, S.; Kaminski, M. D. & Nunez, L.
Partner: UNT Libraries Government Documents Department

Zirconium and technetium recovery and partitioning in the presence of actinides in modified Purex process for ATW program. Final report

Description: The modified Purex process flowsheet is based on combination of all irradiated materials, their joint dissolution and reprocessing as a NPP spent fuel solution with abnormal Pu content after addition of recycled depleted U concentrate. Some groups of long-lived radionuclides could be completely recovered and localized at the stage of extraction reprocessing using 30% TBP. Studies were conducted for 10 y to develop the process for recovery, concentration, and localization of U, Pu, Np, Tc, and Zr within 1st extraction cycle. Actinides are recovered from high-level raffinate of this cycle after evaporation and feed adjustment. Results in this report show that combined deep recovery of several elements from highly irradiated materials by TBP extraction, for further transmutation, is possible. Selective stripping of Zr from solvent phase containing U, Pu, Np, and Tc is quite effective. Development of the modified Purex process is not complete; main problem to be solved should be oxide separation from the loop and permissible storage duration before reprocessing and reuse in the loop.
Date: December 31, 1994
Creator: Dzekun, E.G.; Fedorov, Y.S.; Galkin, B.Y.; Lyubtsev, R.I.; Mashkin, A.N.; Mishin, E.N. et al.
Partner: UNT Libraries Government Documents Department

Recovery of uranium and plutonium from Redox off-standard aqueous waste streams

Description: In the operation of countercurrent extraction columns as in the Redox process, it is possible, and probable, that from unexpected behaviour of a column, operator error, colloid formation, etc., there will result from time to time excessive losses of uranium and plutonium in the overall process. These losses will naturally accumulate in the waste streams, particularly in the aqueous waste streams. If the loss is excessively high, and such lost material can be recovered by some additional method, then if economical and within reason, the recovered materials ran be returned to a ISF column for further processing. The objective of this work has been to develop such a method to recover uranium and plutonium from such off-standard waste streams in a form whereby the uranium send plutonium can be returned to the process line and subsequently purified and separated.
Date: December 31, 1949
Creator: Holm, C.H. & Matheson, A.R.
Partner: UNT Libraries Government Documents Department

Statistical study of variations in yield. 234-5 Building Reduction Operations

Description: This study was made to evaluate the effects of several operatin variables on the yield at the reduction step in motel fabrication. The original question was whether or not the addition of recycled metal to the charge had an effect on the yield. To circumvent possible masking of such as effect by changes in other operating factors, simultaneous data on the weight of Pu in the powder charge, the % conversion of the powder to PuF{sub 4} in the fluorination step, the firing time, and the maximum temperature were also studied. This permitted estimation of the separate effects of al five factors. The period covered by the data was October through December, 1950.
Date: March 7, 1951
Creator: Healy, W.C. Jr.
Partner: UNT Libraries Government Documents Department