182 Matching Results

Search Results

Advanced search parameters have been applied.

INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

Description: The main goal of our work during this time period (August 23, 2001-August 23, 2002) was to conduct a field experiment in Norwegian waters. Preparation for the field experiment included building the apparatus, designing and obtaining the measurement systems, planning the logistics (ships, crew, supplies, etc.) and conducting a survey cruise. The survey cruise, conducted in July 2002, is documented in this report. The field experiment, scheduled for August 2002, was postponed when the Norwegian environmental minister revoked our permit under pressure from Greenpeace. Events surrounding the permitting situation are documented in the Appendix.
Date: April 1, 2003
Creator: Herzog, Howard J. & Adams, E. Eric
Partner: UNT Libraries Government Documents Department

International Collaboration on CO2 Sequestration

Description: This reporting period covers the first half of the two-year sub-task, which includes a review of recent and ongoing engineering studies concerning practical modes for the ocean discharge of CO{sub 2}, review of recent and ongoing experimental studies concerning the rates (and extent) of formation and dissolution for CO{sub 2} hydrates, review of recent and ongoing biological studies concerning organism response to reduced pH and increased CO{sub 2} concentration, and the definition of discharge scenarios. These steps have been successfully completed. Results-to-date were presented at the Annual Fall Meeting of AGU (December 2005) and will be presented at the Annual DOE Meeting on Carbon Capture and Sequestration (May, 2006). The objective during this reporting period was to begin a two-year sub-task to update an assessment of environmental impacts from direct ocean sequestration. The approach is based on the work of Auerbach et al. (1997) and Caulfield et al. (1997) to assess acute impacts, but uses updated information concerning injection scenarios and bioassays.
Date: May 19, 2006
Creator: Herzog, Howard J. & Adams, E. Eric
Partner: UNT Libraries Government Documents Department

INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

Description: On December 4, 1997, the US Department of Energy (DOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a ''Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration''. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impacts of sequestration and the potential for commercialization. This report is a summary of the evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration. Almost 100 papers and reports resulted from this collaboration, including 18 peer reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. A full listing of these publications is in the reference section.
Date: April 1, 2005
Creator: Herzog, Howard J. & Adams, E. Eric
Partner: UNT Libraries Government Documents Department

Preliminary Assessment of Potential Impacts to Dungeness Crabs from Disposal of Dredged Materials from the Columbia River

Description: Dredging of the Columbia River navigation channel has raised concerns about dredging-related impacts on Dungeness crabs (Cancer magister). The overall objectives of this effort are to synthesize what is known about disposal effects on Dungeness crabs (Phase 1) and to offer approaches to quantify the effects, including approaches to gain a population-level perspective on any effects found in subsequent studies (Phase 2). This report documents Phase 1, which included (1) development of a conceptual model to integrate knowledge about crab biology and the physical processes occurring during disposal, (2) application of physics-based numerical modeling of the disposal event to understand the physical forces and processes to which a crab might be exposed during disposal, (3) conduct of a vulnerability analysis to identify the potential mechanisms by which crabs may be injured, and (4) recommendations of topics and approaches for future studies to assess the potential population-level effects of disposal on Dungeness crabs. The conceptual model first recognizes that disposal of dredged materials is a physically dynamic process with three aspects: (1) convective descent and bottom encounter, (2) dynamic collapse and spreading, and (3) mounding. Numerical modeling was used to assess the magnitude of the potentially relevant forces and extent of mounding in single disposal events. The modeling outcomes show that predicted impact pressure, shear stress, and mound depth are greatly reduced by discharge in deep water, and somewhat reduced at longer discharge duration. The analysis of numerical modeling results and vulnerabilities indicate that the vulnerability of crabs to compression forces under any of the disposal scenarios is low. For the deep-water disposal scenarios, the maximum forces and mounding do not appear to be sufficiently high enough to warrant concern for surge currents or burial at the depths involved (over 230 ft). For the shallow-water (45 to 65 ft), short-duration disposal ...
Date: February 1, 2006
Creator: Pearson, Walter H.; Miller, Martin C.; Williams, Greg D.; Kohn, Nancy P. & Skalski, John R.
Partner: UNT Libraries Government Documents Department

MAINTAINING ACCESS TO AMERICA'S INTERMODAL PORTS/TECHNOLOGIES FOR DECONTAMINATION OF DREDGED SEDIMENT: NEW YORK/NEW JERSEY HARBOR

Description: One of the greatest drivers for maintaining access to America's Intermodal ports and related infrastructure redevelopment efforts over the next several years will be the control and treatment of contaminated sediments dredged from the nation's waterways. More than 306 million cubic meters (m{sup 3}) (400 million cubic yards [cy]) of sediments are dredged annually from US waterways, and each year close to 46 million m{sup 3} (60 million cy) of this material is disposed of in the ocean (EPA 842-F-96-003). The need to protect the environment against undesirable effects from sediment dredging and disposal practices is gaining increased attention from the public and governmental agencies. Meeting this need is a challenging task not only from the standpoint of solving formidable scientific and engineering problems, but also, and more importantly, from the need to implement complex collaborations among the many different parties concerned with the problem. Some 40 years ago, C.P. Snow pointed out the problems involved in communicating between the two cultures of the sciences and the humanities (Snow, 1993). Today, it is necessary to extend Snow's concept to a multicultural realm with groups that include governmental, industrial, environmental, academic, and the general public communicating in different languages based on widely different fundamental assumptions. The handling of contaminated sediments in the Port of New York/New Jersey (Port) exemplifies this problem. This paper describes a multicultural team that has formed as the result of a Congressional mandate for the development of procedures suitable for the decontamination of sediments in the Port under the Water Resources Development Act (WRDA) of 1992 (Section 405C) and 1996 (Section 226).
Date: May 1, 1998
Creator: STERN,E.A.; JONES,K.; DONATO,K.; PAULING,J.D.; SONTAG,J.G.; CLESCERI,N.L. et al.
Partner: UNT Libraries Government Documents Department

STUDIES OF TWO-PHASE PLUMES IN STRATIFIED ENVIRONMENTS

Description: Two-phase plumes play an important role in the more practical scenarios for ocean sequestration of CO{sub 2}--i.e. dispersing CO{sub 2} as a buoyant liquid from either a bottom-mounted or ship-towed pipeline. Despite much research on related applications, such as for reservoir destratification using bubble plumes, our understanding of these flows is incomplete, especially concerning the phenomenon of plume peeling in a stratified ambient. To address this deficiency, we have built a laboratory facility in which we can make fundamental measurements of plume behavior. Although we are using air, oil and sediments as our sources of buoyancy (rather than CO{sub 2}), by using models, our results can be directly applied to field scale CO{sub 2} releases to help us design better CO{sub 2} injection systems, as well as plan and interpret the results of our up-coming international field experiment. The experimental facility designed to study two-phase plume behavior similar to that of an ocean CO{sub 2} release includes the following components: 1.22 x 1.22 x 2.44 m tall glass walled tank; Tanks and piping for the two-tank stratification method for producing step- and linearly-stratified ambient conditions; Density profiling system using a conductivity and temperature probe mounted to an automated depth profiler; Lighting systems, including a virtual point source light for shadowgraphs and a 6 W argon-ion laser for laser induced fluorescence (LIF) imaging; Imaging system, including a digital, progressive scanning CCD camera, computerized framegrabber, and image acquisition and analysis software; Buoyancy source diffusers having four different air diffusers, two oil diffusers, and a planned sediment diffuser; Dye injection method using a Mariotte bottle and a collar diffuser; and Systems integration software using the Labview graphical programming language and Windows NT. In comparison with previously reported experiments, this system allows us to extend the parameter range of our experiments to better match ...
Date: November 18, 1998
Creator: Socolofsky, Scott A.; Crounse, Brian C. & Adams, E. Eric
Partner: UNT Libraries Government Documents Department

FEASIBILITY OF LARGE-SCALE OCEAN CO2 SEQUESTRATION

Description: The past year has been one of continued high productivity and technical innovation for research conducted under support of this contract. We report here on the successful completion of development of a deep-ocean laser Raman spectrometer, and the use of this novel system for direct in situ measurement of the dissolution rate of CO{sub 2} from a N{sub 2}/CO{sub 2} gas mixture at 300m ocean depth. We have carried out the deepest ever ocean CO{sub 2} injection experiment at 3960m depth, and have observed the behavior of the plume of low pH/high CO{sub 2} water emanating from this source. This was made possible by the design, construction, and operation of a novel flume to contain the liquid CO{sub 2} and to force flow in a controlled manner over the liquid CO{sub 2} surface. In carrying out this experiment we observed for the first time the extraordinarily rapid hydration kinetics of CO{sub 2} with water at high pressure. This initial observation was later confirmed in a carefully controlled series of acid and CO{sub 2} injection studies at varying depths. In carrying out this research we are aware of the environmental concerns, and we have been in the forefront of identifying the challenges resulting from the far greater quantities of CO{sub 2} being passively absorbed from the atmosphere. This quantity now is approximately 1 million metric tons CO{sub 2} per hour, and reasonable projections for the 21st century project ocean pH changes of 0.3 or more by mid-century. The PIs have played a key role in organizing a major international meeting on this topic, and on reporting the results. We are now engaged in developing the novel techniques required to investigate this problem.
Date: December 1, 2004
Creator: Brewer, Peter G. & Barry, James
Partner: UNT Libraries Government Documents Department

INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

Description: The primary focus of this reporting period was to prepare for conducting the ocean carbon sequestration field experiment during the summer of 2002. We discuss four key aspects of this preparation: (1) Design criteria for a CO{sub 2} flow system mounted on a ship; (2) Inter-model comparison of plume models; (3) Application of a double plume model to compute near field mixing; and (4) Evaluation of tracers.
Date: September 1, 2002
Creator: Herzog, Howard J. & Adams, E. Eric
Partner: UNT Libraries Government Documents Department

Feasibility of Large-Scale Ocean CO2 Sequestration

Description: Direct ocean injection of CO{sub 2} is one of several approaches under consideration to sequester carbon dioxide in order to stabilize atmospheric CO{sub 2} near 550 ppm (2X preindustrial CO{sub 2} levels). Without significant efforts to stabilize greenhouse gas emissions, the Earth is expected to experience extreme climate warming consequences associated with the projected high ({approx}3-4X preindustrial) atmospheric CO{sub 2} levels in the next 100 to 200 years. Research funded by DOE-Office of Fossil Energy under this award is based on the development of novel experimental methods by MBARI to deploy small quantities (5-45 l) of liquid CO{sub 2} in the deep-sea for the purposes of investigating the fundamental science underlying the concepts of ocean CO{sub 2} sequestration. This project is linked closely with studies funded by the Office of Science and the Monterey Bay Aquarium Research Institute (MBARI). The objectives of studies in marine chemistry funded by the Office of Fossil Energy and MBARI are to: (1) Determine the long term fate of CO{sub 2} hydrate in the deep-sea, (2) Investigate the geochemical changes in marine sediments and pore waters associated with CO{sub 2} disposal, and (3) Investigate the transfer of CO{sub 2} from the hydrate phase to the oceanic water column as a boundary condition for ocean modeling of the fate of the released material. These activities extend the results of recent studies using the deep-sea CO{sub 2} deployment system, which characterized several features of liquid CO{sub 2} released into the sea, including hydrate formation and factors influencing dissolution rates of CO{sub 2}. Results from this project are relevant in determining the efficacy of carbon sequestration and the degree of perturbation of seawater chemistry. Biological studies, funded jointly by the Office of Science, Office of Fossil Energy, and MBARI, focus on the environmental consequences of CO{sub 2} release ...
Date: September 30, 2001
Creator: Brewer, Peter & Barry, James
Partner: UNT Libraries Government Documents Department

Large-Scale CO2 Transportation and Deep Ocean Sequestration

Description: Technical and economical feasibility of large-scale CO{sub 2} transportation and ocean sequestration at depths of 3000 meters or grater was investigated. Two options were examined for transporting and disposing the captured CO{sub 2}. In one case, CO{sub 2} was pumped from a land-based collection center through long pipelines laid on the ocean floor. Another case considered oceanic tanker transport of liquid carbon dioxide to an offshore floating structure for vertical injection to the ocean floor. In the latter case, a novel concept based on subsurface towing of a 3000-meter pipe, and attaching it to the offshore structure was considered. Budgetary cost estimates indicate that for distances greater than 400 km, tanker transportation and offshore injection through a 3000-meter vertical pipe provides the best method for delivering liquid CO{sub 2} to deep ocean floor depressions. For shorter distances, CO{sub 2} delivery by parallel-laid, subsea pipelines is more cost-effective. Estimated costs for 500-km transport and storage at a depth of 3000 meters by subsea pipelines and tankers were 1.5 and 1.4 dollars per ton of stored CO{sub 2}, respectively. At these prices, economics of ocean disposal are highly favorable. Future work should focus on addressing technical issues that are critical to the deployment of a large-scale CO{sub 2} transportation and disposal system. Pipe corrosion, structural design of the transport pipe, and dispersion characteristics of sinking CO{sub 2} effluent plumes have been identified as areas that require further attention. Our planned activities in the next Phase include laboratory-scale corrosion testing, structural analysis of the pipeline, analytical and experimental simulations of CO{sub 2} discharge and dispersion, and the conceptual economic and engineering evaluation of large-scale implementation.
Date: March 1, 1999
Creator: Sarv, Hamid
Partner: UNT Libraries Government Documents Department

Laboratory Investigations in Support of Dioxide-Limestone Sequestration in the Ocean

Description: Research under this Project has proven that liquid carbon dioxide can be emulsified in water by using very fine particles as emulsion stabilizers. Hydrophilic particles stabilize a CO{sub 2}-in-H{sub 2}O (C/W) emulsion; hydrophobic particles stabilize a H{sub 2}O-in-CO{sub 2} (W/C) emulsion. The C/W emulsion consists of tiny CO{sub 2} droplets coated with hydrophilic particles dispersed in water. The W/C emulsion consists of tiny H{sub 2}O droplets coated with hydrophobic particles dispersed in liquid carbon dioxide. The coated droplets are called globules. The emulsions could be used for deep ocean sequestration of CO{sub 2}. Liquid CO{sub 2} is sparsely soluble in water, and is less dense than seawater. If neat, liquid CO{sub 2} were injected in the deep ocean, it is likely that the dispersed CO{sub 2} droplets would buoy upward and flash into vapor before the droplets dissolve in seawater. The resulting vapor bubbles would re-emerge into the atmosphere. On the other hand, the emulsion is denser than seawater, hence the emulsion plume would sink toward greater depth from the injection point. For ocean sequestration a C/W emulsion appears to be most practical using limestone (CaCO{sub 3}) particles of a few to ten ?m diameter as stabilizing agents. A mix of one volume of liquid CO{sub 2} with two volumes of H{sub 2}O, plus 0.5 weight of pulverized limestone per weight of liquid CO{sub 2} forms a stable emulsion with density 1087 kg m{sup -3}. Ambient seawater at 500 m depth has a density of approximately 1026 kg m{sup -3}, so the emulsion plume would sink by gravity while entraining ambient seawater till density equilibrium is reached. Limestone is abundant world-wide, and is relatively cheap. Furthermore, upon disintegration of the emulsion the CaCO{sub 3} particles would partially buffer the carbonic acid that forms when CO{sub 2} dissolves in seawater, alleviating ...
Date: September 30, 2008
Creator: Golomb, Dan; Barry, Eugene; Ryan, David; Pennell, Stephen; Lawton, Carl; Swett, Peter et al.
Partner: UNT Libraries Government Documents Department

Performance assessment overview for subseabed disposal of high level radioactive waste

Description: The Subseabed Disposal Project (SDP) was part of an international program that investigated the feasibility of high-level radioactive waste disposal in the deep ocean sediments. This report briefly describes the seven-step iterative performance assessment procedures used in this study and presents representative results of the last iteration. The results of the performance are compared to interim standards developed for the SDP, to other conceptual repositories, and to related metrics. The attributes, limitations, uncertainties, and remaining tasks in the SDP feasibility phase are discussed.
Date: June 1, 1997
Creator: Klett, R.D.
Partner: UNT Libraries Government Documents Department

Interim radiological safety standards and evaluation procedures for subseabed high-level waste disposal

Description: The Seabed Disposal Project (SDP) was evaluating the technical feasibility of high-level nuclear waste disposal in deep ocean sediments. Working standards were needed for risk assessments, evaluation of alternative designs, sensitivity studies, and conceptual design guidelines. This report completes a three part program to develop radiological standards for the feasibility phase of the SDP. The characteristics of subseabed disposal and how they affect the selection of standards are discussed. General radiological protection standards are reviewed, along with some new methods, and a systematic approach to developing standards is presented. The selected interim radiological standards for the SDP and the reasons for their selection are given. These standards have no legal or regulatory status and will be replaced or modified by regulatory agencies if subseabed disposal is implemented. 56 refs., 29 figs., 15 tabs.
Date: June 1, 1997
Creator: Klett, R.D.
Partner: UNT Libraries Government Documents Department

Produced water toxicity tests accurately measure the produced water toxicity in marine environments?

Description: U.S. Environmental Protection Agency (EPA) Region VI has issued a general permit for offshore oil and gas discharges to the Gulf of Mexico that places numerical limits on whole effluent toxicity (WEI) for produced water. Recently proposed EPA general permits for other produced water discharges in Regions VI and X also include enforceable numerical limits on WET. Clearly, the industry will be conducting extensive produced water WET testing. Unfortunately, the WET test may not accurately measure the toxicity of the chemical constituents of produced water. Rather the mortality of test organisms may be attributable to (1) the high salinity of produced water, which causes salinity shock to the organisms, or (2) an ionic imbalance caused by excesses or deficiencies of one or more of seawater`s essential ions in the test chambers. Both of these effects are likely to be mitigated in actual offshore discharge settings, where the receiving water will be seawater and substantial dilution will be probable. Thus, the additional salinity of produced water will be rapidly assimilated, and the proper marine ionic balance will be quickly restored. Regulatory authorities should be aware of these factors when interpreting WET test results.
Date: October 1, 1996
Creator: Douglas, W.S. & Veil, J.A.
Partner: UNT Libraries Government Documents Department

Increased emphasis on toxics control in oil and gas industry NPDES permits

Description: The 1987 amendments to the Clean Water Act emphasized stricter control of toxics in wastewater discharges. Although state and U.S. Environmental Protection Agency permit writers have had the authority to incorporate strict water quality-based controls in permits, they did not widely use this authority in the past. However, general permits proposed in the past year by Region VI for discharges into the territorial seas of Louisiana and by Region X for coastal and offshore discharges in Alaska are much stricter than their predecessors. The Region VI permit requires numerical produced water limits on arsenic, lead, benzene, total phenols, radium, and whole effluent toxicity. The Region X permit requires numerical produced water limits on copper, arsenic, zinc, total aromatic hydrocarbons, total aqueous hydrocarbons, and whole effluent toxicity. The additional requirements increase the cost of complying with the permit, present more opportunities for exceeding one of the permit limits, and serve as a precedent for future permits. The industry should be prepared to accept the additional costs of these requirements or develop data to convince the regulatory agencies that the increased level of monitoring and permit limits is not necessary to protect water quality. Regulatory agencies should be receptive to new data provided by the industry and flexible in setting additional toxics controls.
Date: October 1, 1996
Creator: Veil, J.A.
Partner: UNT Libraries Government Documents Department

Nuclear waste isolation activities report

Description: Included are: a report from the Deputy Assistant Secretary, a summary of recent events, new literature, a list of upcoming waste management meetings, and background information on DOE`s radwaste management programs. (DLC)
Date: December 1, 1980
Partner: UNT Libraries Government Documents Department

Ecological evaluation of proposed dredged material from the Point Frazer Bend Reach, Winyah Bay, South Carolina

Description: The port of Georgetown, South Carolina, is served by navigational channels within Winyah Bay and the lower Sampit River. Dredging is required to maintain these waterways and to facilitate normal shipping traffic. Prior to dredging, ecological evaluations must be conducted to determine the suitability of the proposed dredged material for open-ocean disposal. These evaluations are to be performed under Section 103 of the Marine Protection, Research, and, Sanctuaries Act of 1972 (MPRSA), following the testing protocols presented in Evaluation of Dredged Material Proposed for Ocean Disposal Testing Manual, hereafter referred to as the 1991 Implementation Manual. The Charleston Intensive Project is a reevaluation of sediments collected from two stations (IH-2 and IH-3) in the Frazier Point Bend reach of the Winyah Bay channel. Reference sediment was also collected from site IH-R2, just south of Hare Island. The results of physical/chemical analyses indicated that some contaminants of concern were present in test treatments representing dredged material when compared with the reference treatment IH-R2. The results of this study indicate that, based on the acute toxicity and chemical analyses, dredged material represented by these test treatments is suitable for open-ocean disposal.
Date: February 1, 1995
Creator: Gardiner, W.W.; Ward, J.A. & Word, J.Q.
Partner: UNT Libraries Government Documents Department

Autonomous observing strategies for the ocean carbon cycle

Description: Understanding the exchanges of carbon between the atmosphere and ocean and the fate of carbon delivered to the deep sea is fundamental to the evaluation of ocean carbon sequestration options. An additional key requirement is that sequestration must be verifiable and that environmental effects be monitored and minimized. These needs can be addressed by carbon system observations made from low-cost autonomous ocean-profiling floats and gliders. We have developed a prototype ocean carbon system profiler based on the Sounding Oceanographic Lagrangian Observer (SOLO; Davis et al., 1999). The SOLO/ carbon profiler will measure the two biomass components of the carbon system and their relationship to physical variables, such as upper ocean stratification and mixing. The autonomous observations within the upper 1500 m will be made on daily time scales for periods of months to seasons and will be carried out in biologically dynamic locations in the world's oceans that are difficult to access with ships (due to weather) or observe using remote sensing satellites (due to cloud cover). Such an observational capability not only will serve an important role in carbon sequestration research but will provide key observations of the global ocean's natural carbon cycle.
Date: July 26, 2000
Creator: Bishop, James K. & Davis, Russ E.
Partner: UNT Libraries Government Documents Department

Corrosion of barrier materials in seawater environments

Description: A brief review has been carried out on the performance of barrier materials for low-level radioactive wastes in seawater environments. The environments include those for shallower coastal waters as well as the deep ocean (down to 3800 m). The review is mainly focused on metallic materials since they are the most common for seawater service and they have the largest data base. Information from the literature is usually pertinent to shallower coastal locations, but there is a valuable source of corrosion data obtained from several studies of metallic specimens exposed to ocean-bed conditions. In addition, the corrosion of carbon steel barriers has been evaluated for actual waste containers that were retrieved from previously-used disposal sites in the Atlantic and Pacific Oceans. Of the metallic materials studied, carbon steel showed the least corrosion resistance. Failure by non-uniform attack in a typical waste container could occur in as little as 25 y in some ocean environments ` Penetration by local attack, such as pitting and crevice corrosion resistance was also observed for more expensive materials such as low-alloy steels, stainless steels, titanium alloys, zirconium alloys, copper alloys, nickel alloys, aluminum alloys, and lead alloys.
Date: July 1, 1995
Creator: Heiser, J.H. & Soo, P.
Partner: UNT Libraries Government Documents Department

Laboratory Investigations in Support of Carbon Dioxide-Limestone Sequestration in the Ocean

Description: This semi-annual progress reports includes further findings on CO{sub 2}-in-Water (C/W) emulsions stabilized by fine particles. In previous semi-annual reports we described the formation of stable C/W emulsions using pulverized limestone (CaCO{sub 3}), flyash, beach sand, shale and lizardite, a rock rich in magnesium silicate. For the creation of these emulsions we used a High-Pressure Batch Reactor (HPBR) equipped with view windows for illumination and video camera recording. For deep ocean sequestration, a C/W emulsion using pulverized limestone may be the most suitable. (a) Limestone (mainly CaCO{sub 3}) is cheap and plentiful; (b) limestone is innocuous for marine organisms (in fact, it is the natural ingredient of shells and corals); (c) it buffers the carbonic acid that forms when CO{sub 2} dissolves in water. For large-scale sequestration of a CO{sub 2}/H{sub 2}O/CaCO{sub 3} emulsion a device is needed that mixes the ingredients, liquid carbon dioxide, seawater, and a slurry of pulverized limestone in seawater continuously, rather than incrementally as in a batch reactor. A practical mixing device is a Kenics-type static mixer. The static mixer has no moving parts, and the shear force for mixing is provided by the hydrostatic pressure of liquid CO{sub 2} and CaCO{sub 3} slurry in the delivery pipes from the shore to the disposal depth. This semi-annual progress report is dedicated to the description of the static mixer and the results that have been obtained using a bench-scale static mixer for the continuous formation of a CO{sub 2}/H{sub 2}O/CaCO{sub 3} emulsion. The static mixer has an ID of 0.63 cm, length 23.5 cm, number of baffles 27. Under pressure, a slurry of CaCO{sub 3} in artificial seawater (3.5% by weight NaCl) and liquid CO{sub 2} are co-injected into the mixer. From the mixer, the resulting emulsion flows into a Jerguson cell with two oblong windows ...
Date: November 1, 2005
Creator: Golomb, Dan; Barry, Eugene; Ryan, David; Lawton, Carl; Pennell, Stephen; Swett, Peter et al.
Partner: UNT Libraries Government Documents Department

Tier 1 ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters

Description: The Water Resources Development Act of 1986 (Public Law 99--662) authorized the U.S. Army Corps of Engineers (USACE) -- San Francisco District, to accommodate larger, deeper draft vessels in Oakland inner and Outer Harbors by deepening and widening the existing navigation channel, and providing turning basins and maneuvering areas in Oakland inner Harbor. The suitability of the resulting dredged material for disposal into ocean waters was subject to the procedures of the 1991 Testing Manual, Evaluation of Dredged Material Proposed for Ocean Disposal, known as the ``Green Book``. The Green Book provides a tiered approach for testing the suitability of dredged materials through chemical, physical, and biological evaluations. The first level of investigation, or Tier 1 evaluation, is used to determine whether a decision on LPC compliance can be made on the basis of readily available information. The Tier 1 report primarily summarizes existing information on sediment contamination and toxicity potential, identifies contaminants of concern, and determines the need for further testing. To assist the USACE in determining the suitability of dredged material from Oakland inner and Outer Harbors for ocean disposal, Battelle/Marine Sciences Laboratory prepared this Tier 1 report based upon information and data provided by USACE. Because this Tier 1 report originated well after an LPC determination was made to require testing of project sediments in Tier 3, the primary purpose of this report was to identify contaminants of concern (if any) in that particular dredged material. In addition, this Tier 1 report summarizes available information on chemical, physical, and biological characterization of the sediments in Oakland inner and Outer Harbors.
Date: January 1, 1994
Creator: Shreffler, D. K.; Thorn, R. M.; Walls, B. E. & Word, J. Q.
Partner: UNT Libraries Government Documents Department

High-level radioactive waste management alternatives

Description: A summary of a comprehensive overview study of potential alternatives for long-term management of high-level radioactive waste is presented. The concepts studied included disposal in geologic formations, disposal in seabeds, disposal in ice caps, disposal into space, and elimination by transmutation. (TFD)
Date: May 1, 1974
Partner: UNT Libraries Government Documents Department

Framework for a comparative environmental assessment of drilling fluids

Description: During the drilling of an oil or gas well, drilling fluid (or mud) is used to maintain well control and to remove drill cuttings from the hole. In response to effluent limitation guidelines promulgated by the US Environmental Protection Agency (EPA) for discharge of drilling wastes offshore, alternatives to water and oil-based muds have been developed. These synthetic-based muds (SBMs) are more efficient than water-based muds (WBMs) for drilling difficult and complex formation intervals and have lower toxicity and smaller environmental impacts than diesel or conventional mineral oil-based muds (OBMs). A third category of drilling fluids, derived from petroleum and called enhanced mineral oils (EMOs), also have these advantages over the traditionally used OBMs and WBMs. EPA recognizes that SBMs and EMOs are new classes of drilling fluids, but their regulatory status is unclear. To address this uncertainty, EPA is following an innovative presumptive rulemaking process that will develop final regulations for SBM discharges offshore in less than three years. This report develops a framework for a comparative risk assessment for the discharge of SBMs and EMOs, to help support a risk-based, integrated approach to regulatory decision making. The framework will help identify potential impacts and benefits associated with the use of SBMs, EMOs, WBMs, and OBMs; identify areas where additional data are needed; and support early decision-making in the absence of complete data. As additional data becomes available, the framework can support a full quantitative comparative assessment. Detailed data are provided to support a comparative assessment in the areas of occupational and public health impacts.
Date: November 1, 1998
Creator: Meinhold, A.F.
Partner: UNT Libraries Government Documents Department