49 Matching Results

Search Results

Advanced search parameters have been applied.

CLOSURE REPORT FOR CORRECTIVE ACTION UNIT165: AREA 25 AND 26 DRY WELL AND WASH DOWN AREAS, NEVADA TEST SITE, NEVADA

Description: This Closure Report (CR) documents the closure activities for Corrective Action Unit (CAU) 165, Area 25 and 26 Dry Well and Washdown Areas, according to the Federal Facility Agreement and Consent Order (FFACO) of 1996. CAU 165 consists of 8 Corrective Action Sites (CASs) located in Areas 25 and 26 of the Nevada Test Site (NTS). The NTS is located approximately 105 kilometers (65 miles) northwest of Las Vegas, nevada. Site closure activities were performed according to the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 165. CAU 165 consists of the following CASs: (1) CAS 25-07-06, Train Decontamination Area; (2) CAS 25-07-07, Vehicle Washdown; (3) CAS 25-20-01, Lab Drain Dry Well; (4) CAS 25-47-01, Reservoir and French Drain; (5) CAS 25-51-02, Drywell; (6) CAS 25-59-01, Septic System; (7) CAS 26-07-01, Vehicle Washdown Station; and (8) CAS 26-59-01, Septic System. CAU 165, Area 25 and 26 Dry Well and Washdown Areas, consists of eight CASs located in Areas 25 and 26 of the NTS. The approved closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls.
Date: December 1, 2005
Creator: NEVADA, BECHTEL
Partner: UNT Libraries Government Documents Department

REMOTE DETECTION OF INTERNAL PIPELINE CORROSION USING FLUIDIZED SENSORS

Description: Pipelines present a unique challenge to monitoring because of the great geographical distances they cover, their burial depth, their age, and the need to keep the product flowing without much interruption. Most other engineering structures that require monitoring do not pose such combined challenges. In this regard, a pipeline system can be considered analogous to the blood vessels in the human body. The human body has an extensive ''pipeline'' through which blood and other fluids are transported. The brain can generally sense damage to the system at any location and alert the body to provide temporary repair, unless the damage is severe. This is accomplished through a vast network of fixed and floating sensors combined with a vast and extremely complex communication/decision making system. The project described in this report mimics the distributed sensor system of our body, albeit in a much more rudimentary fashion. Internal corrosion is an important factor in pipeline integrity management. At present, the methods to assess internal corrosion in pipelines all have certain limitations. In-line inspection tools are costly and cannot be used in all pipelines. Because there is a significant time interval between inspections, any impact due to upsets in pipeline operations can be missed. Internal Corrosion Direct Assessment (ICDA) is a procedure that can be used to identify locations of possible internal corrosion. However, the uncertainties in the procedure require excavation and location of damage using more detailed inspection tools. Non-intrusive monitoring techniques can be used to monitor internal corrosion, but these tools also require pipeline excavation and are limited in the spatial extent of corrosion they can examine. Therefore, a floating sensor system that can deposit at locations of water accumulation and communicate the corrosion information to an external location is needed. To accomplish this, the project is divided into four main ...
Date: October 31, 2005
Creator: Sridhar, Narasi; Tormoen, Garth & Sabata, Ashok
Partner: UNT Libraries Government Documents Department

Further Evolution of Composite Doubler Aircraft Repairs Through a Focus on Niche Applications

Description: The number of commercial airframes exceeding twenty years of service continues to grow. A typical aircraft can experience over 2,000 fatigue cycles (cabin pressurizations) and even greater flight hours in a single year. An unavoidable by-product of aircraft use is that crack and corrosion flaws develop throughout the aircraft's skin and substructure elements. Economic barriers to the purchase of new aircraft have created an aging aircraft fleet and placed even greater demands on efficient and safe repair methods. The use of bonded composite doublers offers the airframe manufacturers and aircraft maintenance facilities a cost effective method to safety extend the lives of their aircraft. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The FAA's Airworthiness Assurance Center at Sandia National Labs (AANC) is conducting a program with Boeing and Federal Express to validate and introduce composite doubler repair technology to the US commercial aircraft industry. This project focuses on repair of DC-10 structure and builds on the foundation of the successful L-1011 door corner repair that was completed by the AANC, Lockheed-Martin, and Delta Air Lines. The L-1011 composite doubler repair was installed in 1997 and has not developed any flaws in over three years of service, As a follow-on effort, this DC-1O repair program investigated design, analysis, performance (durability, flaw containment, reliability), installation, and nondestructive inspection issues. Current activities are demonstrating regular use of composite doubler repairs on commercial aircraft. The primary goal of this program is to move the technology into niche applications and to streamline the design-to-installation process. Using the data accumulated to date, the team has designed, analyzed, and developed inspection techniques for an array of composite doubler repairs with high-use fuselage skin applications. The general ...
Date: July 15, 2000
Creator: ROACH,DENNIS P.
Partner: UNT Libraries Government Documents Department

DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

Description: This program is undertaken in order to construct and field-demonstrate ''EXPLORER'', a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6- inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the Northeast Gas Association (formerly New York Gas Group), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL) The present report summarizes the accomplishments of the project during its fourth six-month period. The project has in general achieved its goals for this period as outlined in the report. The fabrication of the prototype is complete and is now been tested in the laboratory mainly focusing on endurance testing and testing of launching procedures. Testing of the prototype in the lab is expected to be completed by Fall 2003, to be followed by two field demonstrations in Winter 2003-2004.
Date: October 1, 2003
Creator: Schempf, Hagen
Partner: UNT Libraries Government Documents Department

Innovative Sensors for Pipeline Crawlers: Rotating Permanent Magnet Inspection

Description: Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they may encounter. To facilitate inspection of these ''unpiggable'' pipelines, recent inspection development efforts have focused on a new generation of powered inspection platforms that are able to crawl slowly inside a pipeline and can maneuver past the physical barriers that limit internal inspection applicability, such as bore restrictions, low product flow rate, and low pressure. The first step in this research was to review existing inspection technologies for applicability and compatibility with crawler systems. Most existing inspection technologies, including magnetic flux leakage and ultrasonic methods, had significant implementation limitations including mass, physical size, inspection energy coupling requirements and technology maturity. The remote field technique was the most promising but power consumption was high and anomaly signals were low requiring sensitive detectors and electronics. After reviewing each inspection technology, it was decided to investigate the potential for a new inspection method. The new inspection method takes advantage of advances in permanent magnet strength, along with their wide availability and low cost. Called rotating permanent magnet inspection (RPMI), this patent pending technology employs pairs of permanent magnets rotating around the central axis of a cylinder to induce high current densities in the material under inspection. Anomalies and wall thickness variations are detected with an array of sensors that measure local changes in the magnetic field produced by the induced current flowing in the material. This inspection method is an alternative to the common concentric coil remote field technique that induces low-frequency eddy currents in ferromagnetic pipes and tubes. Since this is a new inspection method, both theory ...
Date: September 30, 2006
Creator: Nestleroth, J. Bruce; Davis, Richard J. & Flamberg, Stephanie
Partner: UNT Libraries Government Documents Department

Innovative Electromagnetic Sensors for Pipeline Crawlers

Description: Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle is in the final year on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The ...
Date: May 4, 2006
Creator: Nestleroth, J. Bruce
Partner: UNT Libraries Government Documents Department

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS

Description: Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle has completed the second year of work on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe ...
Date: November 30, 2005
Creator: Nestleroth, J. Bruce
Partner: UNT Libraries Government Documents Department

NORTH PORTAL-HOT WATER CALCULATION-SHOP BUILDING #5006

Description: The purpose of this design analysis and calculation is to determine the demand for domestic cold water and to size the supply main for the Shop Building No.5006 in accordance with the Uniform Plumbing Code (UPC) (Section 4.4.1) and the U.S. Department of Energy, Order 6430.1A-1540 (Section 4.4.2).
Date: January 25, 2006
Creator: Blackstone, R.
Partner: UNT Libraries Government Documents Department

NORTH PORTAL-SANITARY SEWER CALCULATION-SHOP BUILDING #5006

Description: The purpose of this design calculation is to determine the demand on the waste system and to size the sanitary sewer line serving the Shop Building No.5006 in accordance with the Uniform Plumbing Code (Section 4.4.1) and US Department of Energy Order 6430.1A-1540 (Section 4.4.2).
Date: January 24, 1996
Creator: Blackstone, S.
Partner: UNT Libraries Government Documents Department

Quality assurance program plan for the Site Physical and Electrical Calibration Services Lab. Revision 1

Description: This Quality Assurance Program Plan (QAPP) is organized to address WHC`s implementation of quality assurance requirements as they are presented as interpretive guidance endorsed by the Department of Energy (DOE) Field Office, Richland DOE Order 5700.6C Quality Assurance. The quality assurance requirements presented in this plan will assure Measuring and Test Equipment (M and TE) are in conformance with prescribed technical requirements and that data provided by testing, inspection, or maintenance are valid. This QAPP covers all activities and work elements that are variously called QA, quality control, and quality engineering regardless of the organization performing the work. This QAPP identifies the QA requirements for planning, control, and documentation of operations, modifications, and maintenance of the WHC Site Physical and Electrical Calibration Services Laboratory. The primary function of the WHC Site Physical and Electrical Calibration Services Laboratory is providing calibration, standardization, or repair service of M and TE.
Date: March 2, 1995
Creator: Carpenter, C.A.
Partner: UNT Libraries Government Documents Department

Radiological engineering services for the design of special contamination containments. Final report

Description: The purpose of this study was to provide radiological engineering services for the design of special contamination containments. These containments were to be used during the replacement of leaking and damaged gaskets on the glove boxes in Technical Area-55 (TA-55). The damaged gaskets involved 18 windows and 5 interconnecting spool pieces in fuel processing glove boxes. The work scope included the design and manufacture of special contamination containment enclosures (containments), the preparation of procedures and tool lists to support gasket replacement while using the containments, and the training of appropriate TA-55 personnel in the proper installation, operation and removal of the containments. It was originally anticipated that two basic containment designs would be required, one for the windows and one for spool pieces. Upon examination of the glove boxes it was evident that the individual space envelopes and interferences associated with each glove box would require uniquely designed containments for effective gasket replacement. This resulted in 13 individual containment designs that accommodated the interferences and allowed gasket replacement within the containment. Successful use of the containments for glove box gasket replacement was a significant accomplishment. The operation has proven that a properly managed containment program can enhance routine maintenance of the glove boxes while preventing a contamination release. The ability to perform these operations in containments reduces costs by preventing a contaminant release and eliminating the associated cleanup expenses, reduced radioactive waste and fuel processing down time.
Date: December 31, 1996
Partner: UNT Libraries Government Documents Department

Closure Report for Corrective Action Unit 340: NTS Pesticide Release Sites Nevada Test Site, Nevada

Description: The purpose of this report is to provide documentation of the completed corrective action and to provide data confirming the corrective action. The corrective action was performed in accordance with the approved Corrective Action Plan (CAP) (U.S. Department of Energy [DOE], 1999) and consisted of clean closure by excavation and disposal. The Area 15 Quonset Hut 15-11 was formerly used for storage of farm supplies including pesticides, herbicides, and fertilizers. The Area 23 Quonset Hut 800 was formerly used to clean pesticide and herbicide equipment. Steam-cleaning rinsate and sink drainage occasionally overflowed a sump into adjoining drainage ditches. One ditch flows south and is referred to as the quonset hut ditch. The other ditch flows southeast and is referred to as the inner drainage ditch. The Area 23 Skid Huts were formerly used for storing and mixing pesticide and herbicide solutions. Excess solutions were released directly to the ground near the skid huts. The skid huts were moved to a nearby location prior to the site characterization performed in 1998 and reported in the Corrective Action Decision Document (CADD) (DOE, 1998). The vicinity and site plans of the Area 23 sites are shown in Figures 2 and 3, respectively.
Date: May 1, 2000
Creator: Obi, C. M.
Partner: UNT Libraries Government Documents Department

Proposed low-level radioactive waste handling building at Fermi National Accelerator Laboratory, Batavia, Illinois

Description: The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), evaluating the impacts associated with the proposed Low-Level Radioactive Waste Building at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. As a result of the high energy physics program at Fermilab, small quantities of low-level radioactive wastes are generated. These wastes are collected, sorted and packaged for shipment to an off-site disposal facility in Hanford, Washington. The proposed project includes the construction of a new building to house, all low-level radioactive waste handling operations. The building would provide workspace for five full-time workers. The proposed project would improve the efficiency and safety of the low-level radioactive waste handling at Fermilab by upgrading equipment and consolidating operations into one facility.
Date: June 1, 1995
Partner: UNT Libraries Government Documents Department

105-KW Sandfilter Backwash Pit sludge volume calculation

Description: The volume of sludge contained in the 100-KW Sandfilter Backwash Pit (SFBWP) was calculated from depth measurements of the sludge, pit dimension measurements and analysis of video tape recordings taken by an underwater camera. The term sludge as used in this report is any combination of sand, sediment, or corrosion products visible in the SFBWP area. This work was performed to determine baseline volume for use in determination of quantities of uranium and plutonium deposited in the pit from sandfilter backwashes. The SFBWP has three areas where sludge is deposited: (1) the main pit floor, (2) the transfer channel floor, and (3) the surfaces and structures in the SFBWP. The depths of sludge and the uniformity of deposition varies significantly between these three areas. As a result, each of the areas was evaluated separately. The total volume of sludge determined was 3.75 M{sup 3} (132.2 ft{sup 3}).
Date: February 10, 1995
Creator: Dodd, E.N. Jr.
Partner: UNT Libraries Government Documents Department

DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

Description: This program is undertaken in order to construct and field-demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. This module, which incorporates technology developed by NASA, has already been designed, constructed and tested, having exceeded performance expectations. The full prototype system will be comprehensively tested in the laboratory followed by two field demonstrations in real applications in NGA member utilities' pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. The present report summarizes the accomplishments of the project during its third six-month period. The project has in general achieved its goals for this period as outlined in the report. The fabrication of the prototype is complete and is now been tested in the laboratory mainly focusing on the last system integration issues and on software development for the turning and launching routines. Testing of the prototype in the lab is expected to be completed by Summer 2003, to be followed by two field demonstrations in early Fall 2003.
Date: April 1, 2003
Creator: Vradis, Dr. George C. & Schempf, Dr. Hagen
Partner: UNT Libraries Government Documents Department

Process Waste Assessment, Mechanics Shop

Description: This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Mechanics Shop. The Mechanics Shop maintains and repairs motorized vehicles and equipment on the SNL/California site, to include motorized carts, backhoes, street sweepers, trash truck, portable emergency generators, trencher, portable crane, and man lifts. The major hazardous waste streams routinely generated by the Mechanics Shop are used oil, spent off filters, oily rags, and spent batteries. The used off and spent off filters make up a significant portion of the overall hazardous waste stream. Waste oil and spent batteries are sent off-site for recycling. The rags and spent on filters are not recycled. They are disposed of as hazardous waste. Mechanics Shop personnel continuously look for opportunities to minimize hazardous wastes.
Date: May 1, 1993
Creator: Phillips, N. M.
Partner: UNT Libraries Government Documents Department

Maintenance implementation plan for the Plutonium Finishing Plant. Revision 3

Description: This document outlines the Maintenance Implementation Plan (MIP) for the Plutonium Finishing Plant (PFP) located at the Hanford site at Richland, Washington. This MIP describes the PFP maintenance program relative to DOE order 4330.4B. The MIP defines the key actions needed to meet the guidelines of the Order to produce a cost-effective and efficient maintenance program. A previous report identified the presence of significant quantities of Pu-bearing materials within PFP that pose risks to workers. PFP`s current mission is to develop, install and operate processes which will mitigate these risks. The PFP Maintenance strategy is to equip the facility with systems and equipment able to sustain scheduled PFP operations. The current operating run is scheduled to last seven years. Activities following the stabilization operation will involve an Environmental Impact Statement (EIS) to determine future plant activities. This strategy includes long-term maintenance of the facility for safe occupancy and material storage. The PFP maintenance staff used the graded approach to dictate the priorities of the improvement and upgrade actions identified in Chapter 2 of this document. The MIP documents PFP compliance to the DOE 4330.4B Order. Chapter 2 of the MIP follows the format of the Order in addressing the eighteen elements. As this revision is a total rewrite, no sidebars are included to highlight changes.
Date: March 1, 1996
Creator: Meldrom, C.A.
Partner: UNT Libraries Government Documents Department

Off gas film cooler cleaner

Description: An apparatus is described for cleaning depositions of particulate matter from the inside of tubular piping while the piping is in use. The apparatus is remotely controlled in order to operate in hazardous environments. A housing containing brush and shaft assemblies is mounted on top of the tubular piping. Pneumatic cylinders provide linear motion. A roller nut bearing provides rotary motion. The combined motion causes the brush assembly to rotate as it travels along the tube dislodging particulate matter. The main application for this invention is to clean the off gas cooler of a radioactive waste vitrification unit.
Date: December 31, 1995
Creator: Dhingra, H.S.; Koch, W.C. & Burns, D.C.
Partner: UNT Libraries Government Documents Department

Preliminary Shielding Analysis and Design of the Remote Maintenance Cells for the Proposed National Spallation Neutron Source (NSNS)

Description: Radiation shielding analysis and design calculations were performed for remote maintenance cells of the proposed National Spallation Neutron Source (NSNS) facility. In the analysis, a calculational strategy utilizing coupled high energy Monte Carlo calculations and multi-dimensional discrete ordinates calculations was implemented to perform an activation analysis and shielding assessment of the NSNS remote handling cells. A general description of the remote maintenance cells, the methodology employed, and preliminary results of the shielding analysis and recommendations are presented.
Date: August 1, 2001
Creator: Odano, N
Partner: UNT Libraries Government Documents Department

CLASSIFICATION OF THE MGR MAINTENANCE AND SUPPLY SYSTEM

Description: The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) maintenance and supply system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).
Date: August 31, 1999
Creator: Ziegler, J.A.
Partner: UNT Libraries Government Documents Department

New Waste Calcining Facility Non-Radioactive Process Decontamination

Description: This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre- decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with photographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.
Date: September 30, 2001
Creator: Swenson, Michael C.
Partner: UNT Libraries Government Documents Department