72 Matching Results

Search Results

Advanced search parameters have been applied.

Investigation of spontaneous ignition temperatures of organic compounds with particular emphasis on lubricants

Description: Report presenting the study of spontaneous ignition characteristics of organic compounds with emphasis on the various types of lubricating oils. Results regarding the spontaneous ignition temperatures of the lubricants, pure compounds, effects of additives on spontaneous ignition temperatures, spontaneous ignition temperatures of mixtures and effects of additives, and effect of metal surfaces on spontaneous ignition temperatures are provided.
Date: December 1952
Creator: Frank, Charles E.; Blackham, Angus U. & Swarts, Donald E.
Partner: UNT Libraries Government Documents Department

Comparative Foaming Characteristics of Aeronautical Lubricating Oils

Description: Note presenting comparative data on the volume of foam and stability of foams of aeronautical lubricating oils produced at 100 degrees Celsius by the air-bubbling method. All of the data were obtained with the same foam meter, by a standard technique, and at various rates of air flow. Results regarding the reproducibility of foam tests and treatment of data are provided.
Date: February 1950
Creator: Woods, W. W. & Robinson, J. V.
Partner: UNT Libraries Government Documents Department

The Effect of Xylidines on the Stability of an Aircraft-Engine Lubricating Oil

Description: Report presenting tests to determine the effect of xylidines on the stability of an aircraft-engine lubricating oil. The Indiana oxidation test and measurements of the oxygen absorption rate of the oil samples were performed on Navy 1120 oil, Navy 1120 oil plus 0.5 percent by weight of xylidines, and Navy 1120 oil used in piston-ring-sticking tests both with and without xylidines. Results regarding the Indiana oxidation test, the Davis oxidation test, the automatic oil-oxidation apparatus, and a laboratory inspection are provided.
Date: August 1943
Creator: Olson, Walter T. & Meyrowitz, Emanuel
Partner: UNT Libraries Government Documents Department

Experiments With a Rotating-Cylinder Viscometer at High Shear Rates

Description: "Two straight mineral oils and a polymer-containing oil have been tested in a rotating-cylinder viscometer at high shear rates (maximum 0.25 million reciprocal seconds) and the accompanying heat effects have been investigated. The torque measurements are of low accuracy and fail to establish the moderately non-Newtonian behavior of the polymer-containing oil, but the temperature measurements, which are in good agreement with a thermal analysis, do indicate the presence of temporary viscosity decrease at high shear rates for this oil" (p. 1).
Date: June 1955
Creator: Cole, J. A.; Petersen, R. E. & Emmons, H. W.
Partner: UNT Libraries Government Documents Department

Soy-Based, Water-Cooled, TC W-III Two Cycle Engine Oil

Description: The objective of this project was to achieve technical approval and commercial launch for a biodegradable soy oil-based, environmentally safe, TC W-III performance, water-cooled, two cycle engine oil. To do so would: (1) develop a new use for RBD soybean oil; (2) increase soybean utilization in North America in the range of 500 K-3.0 MM bushels; and (3) open up supply opportunities of 1.5-5.0 MM bushels worldwide. These goals have been successfully obtained.
Date: August 30, 2003
Creator: Scharf, Curtis R. & Miller, Mark E.
Partner: UNT Libraries Government Documents Department

DOE Backup Power Working Group Best Practices Handbook for Maintenance and Operation of Engine Generators, Volume II

Description: The lubricating oil system provides a means to introduce a lubricant in the form of a film to reduce friction and wear between surfaces that bear against each other as they move.1 The oil film which is established also cools the parts by carrying generated heat away from hot surfaces, cleans and carries dirt or metal wear particles to the filter media, and helps seal the piston to the cylinder during combustion. Most systems are pressure lubricated and distribute oil under pressure to bearings, gears, and power assemblies. Lubricating oil usually reaches main, connecting rod, and camshaft bearings through drilled passages in the cylinder block and crankshaft or through piping and common manifolds.Many parts rely on oil for cooling, so if the lube oil system fails to perform its function the engine will overheat. Metal to metal surfaces not separated by a thin film of oil rapidly build up frictional heat. As the metals reach their melting point, they tend to weld together in spots or streaks. Lube oil system failures can cause significant damage to an engine in a short period of time. Proper maintenance and operation of the lubricating oil system is essential if your engine is to accomplish its mission.
Date: October 30, 1998
Creator: Gross, R.E.
Partner: UNT Libraries Government Documents Department

Solid/liquid lubrication of ceramics at elevated temperatures

Description: This study investigates the effect of solid and liquid lubrication on friction and wear performance of silicon nitride (Si{sub 3}N{sub 4}) and cast iron. The solid lubricant was a thin silver film ({approx}2 {mu}m thick) produced on Si{sub 3}N{sub 4} by ion-beam-assisted deposition. A high-temperature polyol-ester-base synthetic oil served as the liquid lubricant. Friction and wear tests were performed with pin-on-disk and oscillating-slider wear test machines at temperatures up to 300{degrees}C. Without the silver films, the friction coefficients of Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4} test pairs were 0.05 to 0.14, and the average wear rates of Si{sub 3}N{sub 4} pins were {approx}5 x 10{sup -8} mm{sup 3} N{sup -1}. The friction coefficients of Si{sub 3}N{sub 4}/cast iron test pairs ranged from 0.08 to 0.11, depending on test temperature. The average specific wear rates of cast iron pins were {approx}3 x 10{sup -7} mm{sup 3} N{sup -1} m{sup -1}. However, simultaneous use of the solid-lubricant silver and synthetic oil on the sliding surfaces reduced friction coefficients to 0.02 to 0.08. Moreover, the wear of Si{sub 3}N{sub 4} pins and silver-coated Si{sub 3}N{sub 4} disks was so low that it was difficult to assess by a surface profilometer. The wear rates of cast iron pins were {approx}7 x 10{sup -9} mm{sup 3} N{sup -1} m{sup -1} up to 250{degrees}C, but showed a tendency to increase slightly at much higher temperatures. In general, the test results demonstrated that the solid/liquid lubrication of ceramic and/or metallic components is both feasible and effective in controlling friction and wear.
Date: April 1, 1996
Creator: Erdemir, A.; Erck, R.A.; Fenske, G.R. & Hong, H.
Partner: UNT Libraries Government Documents Department

Topical Report Tantalum – 2.5% Tungsten Machinability Testing

Description: Protection Association (NFPA). NFPA 484, Standard for Combustible Metals, Chapter 9 Tantalum and Annex E, supplemental Information on Tantalum require cutting oil be used when machining tantalum because it burns at such a high temperature that it breaks down the water in a water-based metalworking fluid (MWF). The NFPA guide devotes approximately 20 pages to this material. The Kansas City Plant (KCP) uses Fuchs Lubricants Ecocut Base 44 LVC as a MWF. This is a highly chlorinated oil with a high flash point (above 200° F). The chlorine is very helpful in preventing BUE (Built Up Edge) that occurs frequently with this very gummy material. The Ecocut is really a MWF additive that Fuchs uses to add chlorinated fats to other non-chlorinated MWF.
Date: September 2, 2009
Creator: Lazarus, L. J.
Partner: UNT Libraries Government Documents Department

Study of lubricant circulation in HVAC systems

Description: This program was aimed at understanding refrigerant/lubricant circulation issues, developing test data and approximate models that can predict operating regimes where good oil management can be assured. A dynamic test facility was constructed and used to examine oil return under varying system operating conditions. The development of industry guidelines for system reliability in using the new refrigerant blends was a goal of this program. To validate the guidelines, techniques and predictions, this dynamic test facility was used to obtain data to compare to the analytical predictions. The overall program approach undertaken to meet this objective was: (1) to identify poor oil return scenarios and, therefore, the worst case oil return parameters for conventional residential HVAC systems using HCFC-22 and mineral oils, in terms of compressor, suction and exhaust line vapor velocity, and refrigerant viscosity requirements; (2) design and instrument a test apparatus that simulates such conditions, as well as those that might be achieved with HFC and POE mixtures and HFCs and mineral oils; (3) conduct tests with the range of baseline refrigerants and lubricant mixtures to provide experimental data; and (4) prepare, present and interpret the test data to provide an expanded understanding of the phenomena required for good oil circulation in split-system heat pump systems. To convert this general approach into the program specifics, three major tasks were defined and pursued. These are described briefly here and in greater detail in the report body as Task 1, Task 2, and Task 3. The report prepared for ARTI as part of the MCLR Project Number 665-53100 is described in Volumes 1 and 2, ``Study of Lubricant Circulation in the HVAC Systems,`` October 1996, from the same authors as this publication. This record consists of the overheads used in the presentation.
Date: February 1, 1997
Creator: Biancardi, F.; Sienel, T.; Pandy, D. & Michels, H.
Partner: UNT Libraries Government Documents Department

Hydro-Balanced Stuffing Box field test

Description: The Hydro-Balanced Stuffing Box is a seal assembly for polished rod pumping installations commonly used in oil and gas pumping well installations to contain produced well fluids. The improved stuffing box was developed and patented by Harold H. Palmour of The Palmour Group of Livingston, TX. The stuffing box is designed to reduce the incidence of seal leakage and to utilize an environmentally safe fluid, so that if there is any leakage, environmental damage is reduced or eliminated. The unit was tested on two wells at the Rocky Mountain Oilfield Testing Center. During the test period, the performance of the stuffing box was measured by monitoring the pressure on the tubing and the inner chamber with a Barton Two-pen recorder. The amount of safe fluid consumed, fluid leakage at the top of the stuffing box, pressure supplied from the nitrogen bottle, ambient temperature, and polish rod temperature was recorded. The stuffing box is capable of providing a better seal between well fluids an d the environment than conventional stuffing boxes. It allows the polished rod to operate cooler and with lubrication, extending the life of the packing elements, and reducing the amount of attention required to prevent leakage.
Date: May 28, 1999
Creator: Giangiacomo, L.A.
Partner: UNT Libraries Government Documents Department

Source term evaluation during seismic events in the Paducah Gaseous Diffusion Plant

Description: The 00 buildings are expected to collapse (per guidance from structure evaluation) during a seismic event in which acceleration level exceeds 0.15g. All roof beams may slip off supports, and collapse. Equipment may slip off from supports and fall onto the floor. The cell floor is also supposed to collapse due to structural instability and distortion due to excessive acceleration forces. Following structure collapse, expansion joints in the process piping and joints between the piping and equipment are expected to fail. Preliminary analysis showed that converters are likely to remain intact. The UF{sub 6} gas released from the break will rapidly interact with moisture in the air to produce UO{sub 2}F{sub 2} and HF with exothermic energy released of {approximately}0.32 MJ/kg of UF{sub 6} reacted. Depending on the degree of mixing between UF{sub 6} gas, its reaction products, air and freon (R-114), there may occur a strong buoyancy force to disperse UO{sub 2}F{sub 2} aerosol particles that are subjected to the gravitational force for settling. Such a chemical reaction will also occur inside the converters. A substantial amount of UF{sub 6} must be stagnated at the bottom of the converters. At the interface between this stagnated UF{sub 6} and air, UF{sub 6} gas will diffuse into the air, undergo the chemical reaction with moisture there, and eventually be released through the break. Furthermore, lubricant oil fire in the building, if it occurs, will enhance the UF{sub 6} release into the atmosphere. The purpose of this study is to evaluate source term (UO{sub 2}F{sub 2} and HF) during such a seismic event. This study takes an approach using multiple steps as follows: (1) Source term evaluation at the break due to mixing between UF{sub 6} and air along with thermal buoyancy induced by chemical reaction energy, (2) Evaluation of additional source ...
Date: December 30, 1996
Creator: Kim, S.H.; Chen, N.C.J.; Schmidt, R.W. & Taleyarkhan, R.P.
Partner: UNT Libraries Government Documents Department

Investigation of flushing and clean-out methods for refrigeration equipment to ensure system compatibility. Quarterly technical progress report, September 15, 1994--December 15, 1994

Description: Integral Sciences Incorporated is engaged in Part 2 of ARTI Contract No. 660-52502 assessing methods for removing residual mineral oil during retrofits of refrigeration systems. Part 2 focuses on a low side oil separator technique for removing mineral oil from systems being retrofitted to use HFC-134a. The method appears less expensive than the current practice of three lubricant changes with polyolester and may effect an accelerated transition to HFC`s. Testing and method verification has been performed using a refrigeration system located at ISI`s facility. Two HFC-134a field retrofits employing this method will be implemented during the first quarter of 1995. A third and final field retrofit will also be performed to evaluate the advanced method in an R-502 conversion.
Date: July 1, 1995
Creator: Byrne, J.J.
Partner: UNT Libraries Government Documents Department

Accelerated screening methods for predicting lubricant performance in refrigerant compressors. Progress report, May 1, 1993--December 31, 1993

Description: As part of an overall testing program to identify more effective bench testers for screening oils for compressors, a comparison is made in this report between data obtained from a Falex specimen tester and those obtained from a high pressure tribometer (HPT). The Falex data were supplied by three compressor manufacturers. These data were mainly obtained by bubbling refrigerants through the oil, whereas, the data from the HPT are based on environmental (temperature and pressure) found in specific contacts in compressors. The same contact geometries and materials are used for both the Falex and the HPT tests. The main purpose of this comparison is to see if the controlled environment and the lower loads used with the HPT produces different rankings than that obtained from the Falex tests. In general, the results obtained from the HPT did not always correlate with each other and those obtained from the Falex tester. These findings are discussed in detail in this report.
Date: January 1, 1994
Creator: Cusano, C.
Partner: UNT Libraries Government Documents Department

Perfluorodiethoxymethane on nickel and nickel oxide surfaces

Description: The interaction of perfluorodiethoxymethane with a nickel single crystal, Ni(100); a nickel crystal with chemisorbed oxygen, Ni(100)-c(2x2)O; and a nickel crystal with nickel oxide crystallites, NiO(100) is investigated in an ultra high vacuum environment using thermal desorption spectroscopy and high resolution electron energy loss spectroscopy. Nickel, a component of hard disk drives and stainless steel, is used to represent metal surfaces in these {open_quotes}real{close_quotes} systems. Perfluorodiethoxymethane is used in this study as a model compound of industrial perfluoropolyether lubricants. These lubricants are known for their exceptional stability, except in the presence of metals. Perfluorodiethoxymethane contains the acetal group (-OCF{sub 2}O-), believed to be particularly vulnerable to attack in the presence of Lewis acids. Since the surfaces studied show increasing Lewis acidity at the nickel atom sites, one might expect to see increasing decomposition of perfluorodiethoxymethane due to acidic attack of the acetal group. No decomposition of perfluorodiethoxymethane is observed on the clean Ni(100) surface, while more research is needed to determine whether a small decomposition pathway is observed on the oxygenated surfaces, or whether sample impurities are interfering with results. The strength of the bonding of perfluorodiethoxymethane to the surface is found to increase as the nickel atoms sites become more acidic in moving from Ni(100) to Ni (100)-c(2x2)O to NiO (100).
Date: March 3, 1994
Creator: Jacobson, J.
Partner: UNT Libraries Government Documents Department

Evaluation of 2004 Toyota Prius Hybrid Electic Drive System Interim Report - Revised

Description: The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery-powered electric motor. Both of these motive power sources are capable of providing mechanical drive power for the vehicle. The engine can deliver a peak power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak power output of 50 kW at 1300 rpm. Together, this engine-motor combination has a specified peak power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.
Date: July 31, 2007
Creator: Ayers, C.W.; Hsu, J.S.; Marlino, L.D.; Miller, C.W.; Ott, G.W., Jr.; Oland, C.B. et al.
Partner: UNT Libraries Government Documents Department

Evaluation of 2004 Toyota Prius Hybrid Electric Drive System Interim Report

Description: Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.
Date: November 23, 2004
Creator: Ayers, C.W.
Partner: UNT Libraries Government Documents Department

Office of FreedomCAR & Vehicle Technologies

Description: High-level objective of this project is to develop nanoparticle based additive technology to improve friction and wear characteristics of engine oil with a long-term focus to enhance durability and efficiency of engines. The project encompasses a detailed investigation of various chemicals that favors stable boundary film formation and therefore reduce friction and wear of engine components. These active chemicals designed as nanomaterials will be surface-stabilized to gain maximum dispersion stability in a lubricant media. This effort shall be focused with the following objectives in mind: develop active nanoparticle composite, optimize process design, detailed tribological testing and surface characterization, physical and chemical characterization of nanomaterials, and limited component level testing to document friction and wear improvements. Additional motivation is to minimize sulfur/phosphorous contents and lower ash forming components in additives and therefore improve aftertreatment functioning and emission. This effort shall be focused, over a two year funding period: Phase-I will be primarily a feasibility study, which includes selection of components for active nanoparticles, design and formulation, and synthesis of the active nanoparticles, optimize process design, physical and chemical characterization of nanomaterials, tribological testing and document friction and wear improvements. As a continuous effort of the Phase-I, Phase-II will focus on the optimization of the identified nanoparticle-based additives specifically for DOE strategic goal - minimizing S and P contents in additives and lowering ash-forming components. Additional efforts will also be invested in extended component level tribo-testing, manufacturing process scale-up, cost evaluation, and commercial viability assessment. In boundary lubrication, mating surfaces in direct physical contact are in surface asperities dimensional scale. These conditions may benefit from the nanometric size of the advanced nanoparticle lubricants in the following ways: (1) by supplying nano to sub-micron size lubricating agents which reduce friction and wear at the asperity contact zone, (2) by enabling strong metal adsorption ...
Date: September 30, 2009
Creator: Boucher, Cheryl
Partner: UNT Libraries Government Documents Department

Third-Party Evaluation of Petro Tex Hydrocarbons, LLC, ReGen Lubricating Oil Re-refining Process

Description: This report presents an assessment of market, energy impact, and utility of the PetroTex Hydrocarbons, LLC., ReGen process for re-refining used lubricating oil to produce Group I, II, and III base oils, diesel fuel, and asphalt. PetroTex Hydrocarbons, LLC., has performed extensive pilot scale evaluations, computer simulations, and market studies of this process and is presently evaluating construction of a 23 million gallon per year industrial-scale plant. PetroTex has obtained a 30 acre site in the Texas Industries RailPark in Midlothian Texas. The environmental and civil engineering assessments of the site are completed, and the company has been granted a special use permit from the City of Midlothian and air emissions permits for the Texas Commission on Environmental Quality.
Date: April 1, 2009
Creator: Compere, A. L. & Griffith, William L.
Partner: UNT Libraries Government Documents Department

Scheduled oil sampling: A proactive approach towards pollution prevention and waste minimization

Description: The Waste Reduction Operations Complex (WROC) at the Idaho National Engineering Laboratory (INEL) maintains an emergency fire protection system which provides fire water during emergency conditions. The diesel engine driving this system receives regular preventative maintenance (PM) and servicing. The Waste Minimization Plan for WROC requires that all systems and processes be given a regular assessment to verify any Pollution Prevention (P2) or Waste Minimization (Waste Min.) activities. The WROC Maintenance group has implemented a proactive or best management practice (BMP) that reflects this P2/Waste Min. awareness. The diesel engine is operated for 30 minutes each week to maintain its readiness. A typical owner`s manual for industrial engines require that the oil be changed every 100-hours of operation or 6-months; only 13-hours of operation occur during the 6-months before the required oil change. Thirteen hours of operation would not warrant changing the oil. The WROC proactive approach to this problem is to perform an annual Scheduled Oil Sampling (SOS). An 8-ounce sample of oil is obtained and sent to a SOS lab. The SOS lab analyzes the condition (breakdown) of the oil and, provides a detailed analysis of metal particulates (from engine wear), and checks for impurities, such as, sulphur, water, coolant, and fuel in the system. The oil is changed only when the sampling results warrant that an oil change is necessary. The actual costs of the oil, filters, and labor far exceed the costs of performing the SOS. The projected cost savings after 8 years is about $12,000 in labor, oil changing costs, and hazardous waste analysis.
Date: November 1, 1995
Creator: Reece, C. & Zirker, L.
Partner: UNT Libraries Government Documents Department

Estimated critical conditions for UF{sub 4}-oil systems in fully oil-reflected spherical geometry

Description: Paraffinic oil has been exposed to UF{sub 6} gas in seal exhaust pumps and cascade equipment at the Portsmouth Gaseous Diffusion Plant. The resulting mixture is more nuclearly reactive than mixtures of UO{sub 2}F{sub 2} and H{sub 2}O and is not bounded by the subcritical mass limits presented in several nuclear criticality safety guides. The purpose of this analysis is to determine several critical parameters; specifically, (1) k{sub {infinity}} and the critical mass for several enrichments and moderation levels and (2) the mass limits for these mixtures. The estimated critical masses for the UF{sub 4}-oil systems are smaller than for the UO{sub 2}F{sub 2}-H{sub 2}O systems. The suggested mass limits for the UF{sub 4}-oil systems are 0.240, 0.280, 0.350, 0.430, and 0.670, and 1.170 kg {sup 235}U for enrichments of 100, 50, 20, 10, 5, and 3 wt.% {sup 235}U respectively.
Date: May 1, 1997
Creator: Plaster, M.J.
Partner: UNT Libraries Government Documents Department

Tritiated liquid waste packaging

Description: An improved method for packaging tritiated waste liquids for burial is described and evaluated. The packaging procedure virtually eliminates tritium exposures to personnel and the environment. The package is shown to be more than adequate for burial of tritiated liquid wastes. Calculations based on tests of the package indicate that the maximum tritium released during 85 yr (seven half-lives of tritium) burial would be 0.002% of the total tritium contained in the package or approximately 1.6 Ci from the 70,000 Ci (recommended maximum) package.
Date: August 31, 1977
Creator: Mershad, E.A.; Thomasson, W.W. & Dauby, J.J.
Partner: UNT Libraries Government Documents Department

Treatment of mixed waste coolant

Description: The primary processes used at Lawrence Livermore National Laboratory (LLNL) for treatment of radioactively contaminated machine coolants are industrial waste treatment and in situ carbon adsorption. These two processes simplify approaches to meeting the sanitary sewer discharge limits and subsequent Land Disposal Restriction criteria for hazardous and mixed wastes (40 CFR 268). Several relatively simple technologies are used in industrial water treatment. These technologies are considered Best Demonstrated Available Technologies, or BDAT, by the Environmental Protection Agency. The machine coolants are primarily aqueous and contain water soluble oil consisting of ethanol amine emulsifiers derived from fatty acids, both synthetic and natural. This emulsion carries away metal turnings from a part being machined on a lathe or other machining tool. When the coolant becomes spent, it contains chlorosolvents carried over from other cutting operations as well as a fair amount of tramp oil from machine bearings. This results in a multiphasic aqueous waste that requires treatment of metal and organic contaminants. During treatment, any dissolved metals are oxidized with hydrogen peroxide. Once oxidized, these metals are flocculated with ferric sulfate and precipitated with sodium hydroxide, and then the precipitate is filtered through diatomaceous earth. The emulsion is broken up by acidifying the coolant. Solvents and oils are adsorbed using powdered carbon. This carbon is easily separated from the remaining coolant by vacuum filtration.
Date: February 1, 1995
Creator: Kidd, S. & Bowers, J.S.
Partner: UNT Libraries Government Documents Department