150 Matching Results

Search Results

Advanced search parameters have been applied.

Subtask 3.16 - Low-BTU Field Gas Application to Microturbines

Description: Low-energy gas at oil production sites presents an environmental challenge to the sites owners. Typically, the gas is managed in flares. Microturbines are an effective alternative to flaring and provide on-site electricity. Microturbines release 10 times fewer NOx emissions than flaring, on a methane fuel basis. The limited acceptable fuel range of microturbines has prevented their application to low-Btu gases. The challenge of this project was to modify a microturbine to operate on gases lower than 350 Btu/scf (the manufacturer's lower limit). The Energy & Environmental Research Center successfully operated a Capstone C30 microturbine firing gases between 100-300 Btu/scf. The microturbine operated at full power firing gases as low as 200 Btu/scf. A power derating was experienced firing gases below 200 Btu/scf. As fuel energy content decreased, NO{sub x} emissions decreased, CO emissions increased, and unburned hydrocarbons remained less than 0.2 ppm. The turbine was self-started on gases as low as 200 Btu/scf. These results are promising for oil production facilities managing low-Btu gases. The modified microturbine provides an emission solution while returning valuable electricity to the oilfield.
Date: June 15, 2007
Creator: Schmidt, Darren & Oster, Benjamin
Partner: UNT Libraries Government Documents Department

Performance of low-Btu fuel gas turbine combustors

Description: This reports on a project to develop low BTU gas fuel nozzle for use in large gas turbine combustors using multiple fuel nozzles. A rich-quench-lean combustor is described here which reduces the amount of NO{sub x} produced by the combustion of the low BTU gas. The combustor incorporates a converging rich stage combustor liner, which separates the rich stage recirculation zones from the quench stage and lean stage air.
Date: November 1, 1995
Creator: Bevan, S.; Bowen, J.H.; Feitelberg, A.S.; Hung, S.L.; Lacey, M.A. & Manning, K.S.
Partner: UNT Libraries Government Documents Department

Minnesota Agri-Power Project. Quarterly report, January--March, 1998

Description: The Minnesota Valley Alfalfa Producers propose to build an alfalfa processing plant integrated with an advanced power plant system at the Granite Falls, Minnesota industrial park to provide 75 MW of base load electric power and a competitively priced source of value added alfalfa based products. This project utilizes air blown fluidized bed gasification technology to process alfalfa stems and another biomass to produce a hot, clean, low heating value gas that will be used in a gas turbine. Exhaust heat from the gas turbine will be used to generate steam to power a steam turbine and provide steam for the processing of the alfalfa leaf into a wide range of products including alfalfa leaf meal, a protein source for livestock. This progress report describes feedstock testing, feedstock supply system, performance guarantees, sales contracts, environmental permits, education, environment, economy, and project coordination and control.
Date: May 1, 1998
Creator: Wilbur, D.
Partner: UNT Libraries Government Documents Department

Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report

Description: The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.
Date: August 1, 1995
Creator: Holzman, M.I.
Partner: UNT Libraries Government Documents Department


Description: Biomass gasification offers a practical way to use this locally available fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be fed directly into the boiler. This strategy of co-firing is compatible with variety of conventional boilers including natural gas fired boilers as well as pulverized coal fired and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a reduction in the primary fossil fuel consumption in the boiler and thereby reducing the greenhouse gas emissions to the atmosphere.
Date: December 1, 2001
Creator: Patel, Babul; McQuigg, Kevin & Toerne, Robert F.
Partner: UNT Libraries Government Documents Department

Second generation PFBC system research and development: Phase 2, Topping combustor development

Description: The use of a Circulating Pressurized Fluidized Bed Combustor (CPFBC) as the primary combustion system for a combustion turbine requires transporting compressor air to the CPFBC and vitiated air/flue gas back to the turbine. In addition, the topping combustion system must be located in the returning vitiated airflow path. The conventional fuel system and turbine center section require major change for the applications. The selected arrangement, which utilizes two topping combustor assemblies, one on each side of the unit, is shown in Figure 1. Half of the vitiated air from the CPFBC enters an intemal plenum chamber in which topping combustors are mounted. Fuel gas enters the assembly via the fuel nozzles at the head end of the combustor. Combustion occurs, and the products of combustion are ducted into the main shell for distribution to the first-stage turbine vanes. Compressor discharge air leaves the main shell, flowing around the annular duct into the adjacent combustion shells. The air flows around the vitiated air plenums and leaves each combustion assembly via nozzles and is ducted to the CPFBC and carbonizer. Because the air entering the combustor is at 1600{degrees}F rather than the 700{degrees}F usual for gas turbines, the conventional type of combustor is not suitable. Both emissions and wall cooling problems preclude the use of the conventional design. Therefore, a combustor that will meet the requirements of utilizing the higher temperature air for both wall cooling and combustion is required. In selecting a combustor design that will withstand the conditions expected in the topping application, the effective utilization of the 1600{degrees}F air mentioned above could satisfy the wall cooling challenge by maintaining a cooling air layer of substantial thickness.
Date: December 1, 1992
Creator: Domeracki, W.; Pillsbury, P. W.; Dowdy, T. E. & Foote, J.
Partner: UNT Libraries Government Documents Department

Pilot gasification and hot gas cleanup operations

Description: The Morgantown Energy Technology Center (METC) has an integrated gasification hot gas cleanup facility to develop gasification, hot particulate and desulfurization process performance data for IGCC systems. The objective of our program is to develop fluidized-bed process performance data for hot gas desulfurization and to further test promising sorbents from lab-scale screening studies at highpressure (300 psia), and temperatures (1,200{degrees}F) using coal-derived fuel gases from a fluid-bed gasifier. The 10-inch inside diameter (ID), nominal 80 lb/hr, air blown gasifier is capable of providing about 300 lb/hr of low BTU gas at 1,000{degrees}F and 425 psig to downstream cleanup devices. The system includes several particle removal stages, which provide the capability to tailor the particle loading to the cleanup section. The gas pressure is reduced to approximately 300 psia and filtered by a candle filter vessel containing up to four filter cartridges. For batch-mode desulfurization test operations, the filtered coal gas is fed to a 6-inch ID, fluid-bed reactor that is preloaded with desulfurization sorbent. Over 400 hours of gasifier operation was logged in 1993 including 384 hours of integration with the cleanup rig. System baseline studies without desulfurization sorbent and repeatability checks with zinc ferrite sorbent were conducted before testing with the then most advanced zinc titanate sorbents, ZT-002 and ZR-005. In addition to the desulfurization testing, candle filters were tested for the duration of the 384 hours of integrated operation. One filter was taken out of service after 254 hours of filtering while another was left in service. At the conclusion of testing this year it is expected that 3 candles, one each with 254, 530, and 784 hours of filtering will be available for analysis for effects of the exposure to the coal gas environment.
Date: December 31, 1995
Creator: Rockey, John M.; Galloway, Edwin; Thomson, Teresa A.; Rutten, Jay & Lui, Alain
Partner: UNT Libraries Government Documents Department

Air extraction in gas turbines burning coal-derived gas

Description: In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.
Date: November 1, 1993
Creator: Yang, Tah-teh; Agrawal, A. K. & Kapat, J. S.
Partner: UNT Libraries Government Documents Department

High-pressure coal fuel processor development

Description: Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. A successful conclusion of the program will enable further component development work and full-scale system demonstrations of this potentially important technology. This paper covers the work on fuel processor rig testing completed in FY92.
Date: December 31, 1992
Creator: Greenhalgh, M. L.; Wen, C. S. & Smith, L.
Partner: UNT Libraries Government Documents Department

Combustion tests of a turbine simulator burning low Btu fuel from a fixed bed gasifier

Description: One of the most efficient and environmentally compatible coal fueled power generation technologies is the integrated gasification combined cycle (IGCC) concept. Commercialization of the IGCC/HGCU concept requires successful development of combustion systems for high temperature low Btu fuel in gas turbines. Toward this goal, a turbine combustion system simulator has been designed, constructed, and fired with high temperature low Btu fuel. Fuel is supplied by a pilot scale fixed bed gasifier and hot gas desulfurization system. The primary objectives of this project are: (1) demonstration of long term operability of the turbine simulator with high temperature low Btu fuel; (2) measurement of NO{sub x}, CO, and particulate emissions; and (3) characterization of particulates in the fuel as well as deposits in the fuel nozzle, combustor, and first stage nozzle. In a related project, a reduced scale rich-quench-lean (RQL) gas turbine combustor has been designed, constructed, and fired with simulated low Btu fuel. The overall objective of this project is to develop an RQL combustor with lower conversion of fuel bound nitrogen (FBN) to NO{sub x} than a conventional combustor.
Date: November 1, 1993
Creator: Cook, C. S.; Abuaf, N.; Feitelberg, A. S.; Hung, S. L.; Najewicz, D. J. & Samuels, M. S.
Partner: UNT Libraries Government Documents Department

Morgantown low-Btu gasifier simulation program

Description: This project's overall purpose is to develop a Morgantown low-Btu gasifier system simulation program. The gasifier system consists of a moving bed gasifier and a gas clean-up system, and the present report concerns steady-state simulation of the gasifier. Since the gasifier output controls the performance of the gas clean-up system, it is necessary to investigate the effects of steam/coal and oxygen/coal ratios and of feed temperature on the gasifier output. Simulation of the gasifier performance, therefore, was undertaken to gain quantitative understanding of these effects. This gasifier simulation program will be coupled with a gas clean-up system simulation program now under development. Simulation of the entire gasifier system will serve as a guideline in planning experiments to enable its optimum overall operation.
Date: October 1, 1978
Partner: UNT Libraries Government Documents Department

Test and evaluate the TRI-GAS low-Btu coal gasification process. Quarterly report, April-June 1980

Description: Four tests were conducted in the TRI-GAS PEDU. Test No. 3S-55 was prematurely shut down because of failure of the steam boiler. Steay-state operation was not achieved. Following repairs to the steam boiler Test No. 3S-56 was conducted. This test was also terminated prematurely, due to failure of the power controller for the steam boiler. Repairs were again made. In Test No. 3S-57, bed temperatures in Stages 2 and 3 were lower than required for gasification, although some reaction occurred at the top of the reactors where the temperatures exceeded 1600 F. The test was concluded somewhat prematurely due to plugging of the coal-feed line. PEDU Test No. 3S-58, an integrated three-stage test, was conducted in June. The heating value of the product gas was about 100 Btu per cu ft even though failure of the reactor heaters prevented the Stage 2 temperature from exceeding 1550 F.
Date: July 1, 1980
Partner: UNT Libraries Government Documents Department

Design and Performance of a Low Btu Fuel Rich-Quench-Lean Gas Turbine Combustor

Description: General Electric Company is developing gas turbines and a high temperature desulfurization system for use in integrated gasification combined cycle (IGCC) power plants. High temperature desulfurization, or hot gas cleanup (HGCU), offers many advantages over conventional low temperature desulfurization processes, but does not reduce the relatively high concentrations of fuel bound nitrogen (FBN) that are typically found in low Btu fuel. When fuels containing bound nitrogen are burned in conventional gas turbine combustors, a significant portion of the FBN is converted to NO{sub x}. Methods of reducing the NO{sub x} emissions from IGCC power plants equipped with HGCU are needed. Rich-quench-lean (RQL) combustion can decrease the conversion of FBN to NO{sub x} because a large fraction of the FBN is converted into non-reactive N{sub 2} in a fuel rich stage. Additional air, required for complete combustion, is added in a quench stage. A lean stage provides sufficient residence time for complete combustion. Objectives General Electric has developed and tested a rich-quench-lean gas turbine combustor for use with low Btu fuels containing FBN. The objective of this work has been to design an RQL combustor that has a lower conversion of FBN to N{sub x} than a conventional low Btu combustor and is suitable for use in a GE heavy duty gas turbine. Such a combustor must be of appropriate size and scale, configuration (can-annular), and capable of reaching ``F`` class firing conditions (combustor exit temperature = 2550{degrees}F).
Date: December 31, 1996
Creator: Feitelberg, A.S.; Jackson, M.R.; Lacey, M.A.; Manning, K.S. & Ritter, A.M.
Partner: UNT Libraries Government Documents Department

Minnesota agripower project. Quarterly report, April--June 1997

Description: The Minnesota Valley Alfalfa Producers (MnVAP) propose to build an alfalfa processing plant integrated with an advanced power plant system at the Granite Falls, Minnesota Industrial Park to provide 75 MW of base load electric power and a competitively priced source of value added alfalfa based products. This project will utilize air blown fluidized bed gasification technology to process alfalfa stems and another biomass to produce a hot, clean, low heating value gas that will be used in a gas turbine. Exhaust heat from the gas turbine will be used to generate steam to power a steam turbine and provide steam for the processing of the alfalfa leaf into a wide range of products including alfalfa leaf meal, a protein source for livestock. The plant will demonstrate high efficiency and environmentally compatible electric power production, as well as increased economic yield from farm operations in the region. The initial phase of the Minnesota Agripower Project (MAP) will be to perform alfalfa feedstock testing, prepare preliminary designs, and develop detailed plans with estimated costs for project implementation. The second phase of MAP will include detailed engineering, construction, and startup. Full commercial operation will start in 2001.
Date: July 1, 1997
Creator: Baloun, J.
Partner: UNT Libraries Government Documents Department

Co-production of electricity and alternate fuels from coal. Final report, August 1995

Description: The Calderon process and its process development unit, PDU, were originally conceived to produce two useful products from a bituminous coal: a desulfurized medium BTU gas containing primarily CO, H{sub 2}, CH{sub 4}, CO{sub 2}, and H{sub 2}O; and a desulfurized low BTU gas containing these same constituents plus N{sub 2} from the air used to provide heat for the process through the combustion of a portion of the fuel. The process was viewed as a means for providing both a synthesis gas for liquid fuel production (perhaps CH{sub 3}OH, alternatively CH{sub 4} or NH{sub 3}) and a pressurized, low BTU fuel gas, for gas turbine based power generation. The Calderon coal process comprises three principle sections which perform the following functions: coal pyrolysis in a continuous, steady flow unit based on coke oven technology; air blown, slagging, coke gasification in a moving bed unit based on a blast furnace technology; and a novel, lime pebble based, product gas processing in which a variety of functions are accomplished including the cracking of hydrocarbons and the removal of sulfur, H{sub 2}S, and of particulates from both the medium and low BTU gases. The product gas processing unit, based on multiple moving beds, has also been conceived to regenerate the lime pebbles and recover sulfur as elemental S.
Date: December 31, 1995
Partner: UNT Libraries Government Documents Department

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report

Description: A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.
Date: February 1, 1996
Partner: UNT Libraries Government Documents Department

IGCC repowering project clean coal II project public design report. Annual report, October 1992--September 1993

Description: Combustion Engineering, Inc. (CE) is participating in a $270 million coal gasification combined cycle repowering project that was designed to provide a nominal 60 MW of electricity to City, Water, Light and Power (CWL&P) in Springfield, Illinois. The Integrated Gasification Combined Cycle (IGCC) system consists of CE`s air-blown entrained flow two-stage gasifier; an advanced hot gas cleanup system; a combustion turbine adapted to use low-BTU gas; and all necessary coal handling equipment, The project is currently completing the second budget period of five. The major activities to date are: (1) Establishment of a design, cost, and schedule for the project; (2) Establishment of financial commitments; (3) Acquire design and modeling data; (4) Establishment of an approved for design (AFD) engineering package; (5) Development of a detailed cost estimate; (6) Resolution of project business issues; (7) CWL&P renewal and replacement activities; and (8) Application for environmental air permits. A Project Management Plan was generated, The conceptual design of the plant was completed and a cost and schedule baseline for the project was established in Budget Period One. This information was used to establish AFD Process Flow Diagrams, Piping and Instrument Diagrams, Equipment Data Sheets, material take offs, site modification plans and other information necessary to develop a plus or minus 20% cost estimate. Environmental permitting activities were accomplished, including the Air Permit Application, completion of the National Environmental Policy Act process, and the draft Environmental Monitoring Plan. At the end of 1992 the DOE requested that Duke Engineering and Services Inc., (DESI) be used to complete the balance of plant cost estimate. DESI was retained to do this work, DESI completed the material take off estimate and included operations, maintenance, and startup in the estimate.
Date: October 1, 1993
Partner: UNT Libraries Government Documents Department

Integrated carbonizer/CPFBC pilot plant

Description: The key components of second-generation or advanced pressurized fluidized bed combustion (APFBC) plants have been successfully tested separately at the pilot plant scale. The tests involved a 254-mm (10-inch)-diameter bubbling bed carbonizer, a 203-mm (8-inch)-diameter circulating bed carbonizer, and a 203-mm (8-inch)-diameter circulating pressurized fluidized bed combustor (CPFBC) operating at 1.42-Mpa (14-atm) pressure. In these tests, particle-capturing ceramic barrier filters were incorporated to investigate gas compatibility issues. The next step in the development of APFBC plant technology is to integrate a carbonizer and a CPFBC with their ceramic barrier filters, then operate the subsystem to investigate integration characteristics. These tests will involve load following and transfer of the char from the reducing atmosphere of the carbonizer to the oxidizing atmosphere of the CPFBC at steady and controlled rates. This paper describes the integrated carbonizer/CPFBC pilot plant being constructed to perform these tests at the John Blizard Research Center of Foster Wheeler Development Corporation (FWDC) in Livingston, New Jersey. Construction and commissioning progress are presented with an overview of the technological development program.
Date: November 1, 1995
Creator: Robertson, A. & Van Hook, J.
Partner: UNT Libraries Government Documents Department

Integrated operation of a pressurized fixed-bed gasifier, hot gas desulfurization system, and turbine simulator

Description: The overall objective of the General Electric Hot Gas Cleanup (HGCU) Program is to develop a commercially viable technology to remove sulfur, particulates, and halogens from a high-temperature fuel gas stream using a moving bed, regenerable mixed metal oxide sorbent based process. The HGCU Program is based on the design and demonstration of the HGCU system in a test facility made up of a pilot-scale fixed bed gasifier, a HGCU system, and a turbine simulator in Schenectady, NY, at the General Electric Research and Development Center. The objectives of the turbine simulator testing are (1) to demonstrate the suitability of fuel gas processed by the HGCU system for use in state-of-the-art gas turbines firing at 2,350 F rotor inlet temperature and (2) to quantify the combustion characteristics and emissions on low-Btu fuel gas. The turbine simulator program also includes the development and operation of experimental combustors based on the rich-quench-lean concept (RQL) to minimize the conversion of ammonia and other fuel-bound nitrogen species to NO{sub x} during combustion. The HGCU system and turbine simulator have been designed to process approximately 8,000 lb/hr of low heating value fuel gas produced by the GE fixed bed gasifier. The HGCU system has utilized several mixed metal oxide sorbents, including zinc ferrite, zinc titanate, and Z-Sorb, with the objective of demonstrating good sulfur removal and mechanical attrition resistance as well as economic cost characteristics. Demonstration of halogen removal and the characterization of alkali and trace metal concentrations in the fuel gas are subordinate objectives of the overall program. This report describes the results of several long-duration pilot tests.
Date: November 1, 1995
Creator: Bevan, S.; Ayala, R.E.; Feitelberg, A. & Furman, A.
Partner: UNT Libraries Government Documents Department

CE IGCC repowering project hot gas clean up system

Description: With sponsorship from the Department of Energy (DOE), and the state of Illinois, Combustion Engineering, Inc. is currently developing a design for a 60 Mw IGCC (Integrated Coal Gasification Combined Cycle) for City Water, Light & Power (CWL&P) in Springfield, Illinois. In addition, to DOE and the state of Illinois, Combustion Engineering, Inc. and CWL&P are contributing to the project. In order to obtain a high thermal efficiency, a hot gas cleanup system has been incorporated for product gas clean up. The cleanup system currently incorporated in the system design is one that is being developed by General Electric Environmental Services, Inc. (GEESI). This is a moving bed process which includes the regeneration of the sorbent material. Testing of the system is currently underway in GEESI`s pilot plant in Schenectady, New York. The hot gas clean up system will use a moving-bed of zinc titanate as an absorbent material to capture gaseous sulfur species in the gas. The cleanup system will be required to operate in a range of 850--1150{degree}F (454--621{degree}C) and under a pressure of 20 atmospheres. Results of the tests indicate that overall sulfur efficiency exceeds 95%, the zinc titanate can be regenerated, and produces an SO{sub 2}-rich tail gas suitable for conversion to sulfuric acid, elemental sulfur or disposable waste.
Date: September 1, 1993
Partner: UNT Libraries Government Documents Department

Second generation PFBC systems research and development: Phase 2, Topping combustor testing at UTSI

Description: This report describes a second generation pressurized fluidized bed combustion (PFBC) power plant. The topping combustor testing is briefly described. The topping combustor burns low BTU gas produced from substoichiometric combustion of coal in a pressurized carbonizer. Char produced is burned in a PFBC.
Date: December 1, 1992
Creator: Johanson, N. R. & Foote, J. P.
Partner: UNT Libraries Government Documents Department

Development of an advanced, continuous mild gasification process for the production of co-products. Quarterly technical progress report, April--June 1988

Description: The Department of Energy is investigating a process concept called Mild Gasification in which rapid devolatilization of coal under mild conditions of temperature and pressure would yield three product slates: a low- or medium-BTU gas, a valuable hydrocarbon condensate, and a reactive char. The ongoing objective of this program is to develop a continuous mild gasification process which will produce a product mix that optimizes process economics. In order to provide the incentive for private industry to commercialize the process, it is necessary to demonstrate yields and qualities in a versatile continuous process development unit (PDU). This unit must be capable of assessing both coal- and process-specific effects in a cost-effective and timely manner. Based on literature reviews and experimental verification, a data base will be developed correlating coal and process parameters with product characteristics. This will provide process developers with the information necessary to derive site-specific economics which will be crucial for the commercialization of the mild gasification process. The literature review and market assessment has been completed under Task 1 of the program. Under Task 2, coal-specific tests are being conducted on three AMAX coals: Chinook, an Indiana {number_sign}3 bituminous coal; Delta, an Illinois {number_sign}6 bituminous coal; and Eagle Butte, a Wyodak subbituminous coal. Various methods of char upgrading are being conducted by AMAX R&D of Golden, Colorado. The upgraded char is then combined with iron ore and tested for pig iron production under an AMAX subcontract to Pellet Technology Corporation of Marquette, Michigan. In addition to the test program, process development and scaleup information is being developed for a 1 ton/hr pilot plant unit. Plans for Tasks 2 and 3, equipment modifications, and report. Results include: char analysis, condensable analysis, waste water analysis, and gas analysis.
Date: July 1, 1988
Creator: Ness, R. O. Jr.
Partner: UNT Libraries Government Documents Department

Current status of design and construction of ENCOAL Mild Gasification Plant

Description: The ENCOAL project is demonstrating for the first time the integrated operation of several process steps: a. Coal drying on a rotary grate using convective heatin; b. Coal devolatilization on a rotary grate using convective heating; c. Hot particulate removal with cyclones integral solids cooling; and deactivation-passivation; e. Combustors operating on low-Btu gas from internal streams; f. Solids stabilization for storage and shipment; g. Computer control and optimization of a mild coal gasification process. The product fuels are expected to be used economically in commercial boilers and furnaces and to significantly reduce sulfur emissions at industrial and utility facilities currently burning high sulfur bituminous fuels or fuel oils thereby reducing acid rain-causing pollutants. The design and construction of the ENCOAL demonstration plan was done on a fast track basis, that is, these activities were extensively overlapped.
Date: November 1, 1992
Creator: Frederick, J. P.; Siddoway, M. A. & Coolidge, D. W.
Partner: UNT Libraries Government Documents Department