244 Matching Results

Search Results

Advanced search parameters have been applied.

Lithium-oxide-stabilized alpha manganese dioxide for rechargeable lithium batteries

Description: Objective was to increase the reversible cycling capacity of anhydrous {alpha}-MnO{sub 2} by stabilizing its structure. We have synthesized various {alpha}-MnO{sub 2} materials and modified their structures via lithia doping in order to determine what properties are important for controlling cycling performance. A set of new stabilized {alpha}-[xLi{sub 2}O]{center_dot}MnO{sub 2} (x<0.2) cathode materials was synthesized, structurally characterized, and electrochemically evaluated.
Date: June 1996
Creator: Johnson, C. S.; Dees, D. W.; Mansuetto, M. F.; Thackeray, M. M.; Vissers, D. R.; Argyriou, D. et al.
Partner: UNT Libraries Government Documents Department

LARGE ANGLE ELECTRO-OPTIC BEAM DEFLECTOR FOR THE INFRARED BASED ON A FERROELECTRIC.

Description: An electro-optic beam scanner fabricated on ferroelectric LiTaO{sub 3} is demonstrated which is capable of continuously scanning at wavelengths ranging from 0.4-5 {micro}m. The scanning performance varied from a total deflection angle of 13.38{sup o} at 1558 nm to 16.18{sup o} at 632.8 nm. The dispersion of the r{sub 33} and r{sub 13} electro-optic coefficients of LiTaO{sub 3} with wavelength was also determined.
Date: January 1, 2001
Creator: Gahagan, K. T. (Kevin T.); Casson, J. L. (Joanna L.); Robinson, J. M. (Jeanne M.); Scymgeour, D. A. (David A.); Gopalan, V. (Venkatraman); Libatique, N. J (Nathan J.) et al.
Partner: UNT Libraries Government Documents Department

Thin-film rechargeable lithium batteries with amorphous Li{sub x}Mn{sub 2}O{sub 4} cathodes

Description: Cathode films of amorphous Li{sub x}Mn{sub 2}O{sub 4} have been grown by rf magnetron sputtering on unheated substrates. A low process gas pressure and a positive substrate bias were found to give the most conductive cathodes. The batteries were completed with subsequent deposition of a lithium phosphorous oxynitride electrolyte and Li anode. These cells were cycled at 25-100 C between 4.5 and 1.5 V which corresponds to {approximately}0 to 2 Li per Mn{sub 2}O{sub 4}. The amorphous cathodes have a highs pecific capacity and a low capacity loss per cycle.
Date: January 1, 1996
Creator: Dudney, N.J.; Bates, J.B.; Lubben, D. & Hart, F.X
Partner: UNT Libraries Government Documents Department

Structural and electrochemical studies of alpha manganese dioxide ({alpha}-MnO{sub 2})

Description: The structural and electrochemical properties of alpha-MnO[sub 2], prepared by acid digestion of Mn[sub 2]O[sub 3], and its lithiated derivatives xLi[sub 2] O . MnO[sub 2] (where x is greater than or equal to zero and less than or equal to 0.25) have been investigated as insertion compounds in the search for new and viable cathode materials for rechargeable 3-V batteries. The alpha-MnO[sub 2] product fabricated by this technique contains water within the large (2x2) channels of the structure; the water can be removed from the alpha-MnO[sub 2] framework without degradation of the structure, and then at least partially replaced by Li[sub 2]O. The lithia-doped alpha-MnO[sub 2] electrodes, described generically as xLi[sub 2]O . Mno[sub 2], stabilize the structure and provide higher capacities on cycling than the parent material. The structures of these alpha- MnO[sub 2]-type electrode materials are described. and electrochemical data are presented for both liquid electrolyte and polymer electrolyte Li/alpha-MnO[sub 2] and Li/xLi[sub 2]O . MnO[sub 2] cells.
Date: August 1, 1996
Creator: Johnson, C.S.; Dees, D.W.; Mansuetto, M.F.; Thackeray, M.M.; Vissers, D.R.; Argyriou, D. et al.
Partner: UNT Libraries Government Documents Department

Structural and electrochemical potential simulation for the cathode material Li{sub 1+x}V{sub 3}O{sub 8}

Description: The structure and electrochemical potential of monoclinic Li{sub 1+x}V{sub 3}O{sub 8} were calculated within the local-density-functional-theory framework by use of plane-wave-pseudopotential methods. Special attention was given to the compositions 1+x=1.2 and 1+x=4, for which x-ray diffraction structure refinements are available. The calculated low-energy configuration for 1+x=4 is consistent with the three Li sites identified in x-ray diffraction measurements and predicts the position of the unobserved Li. The location of the tetrahedrally coordinated Li in the calculated low-energy configuration for 1+x=1.5 is consistent with the structure measured by x-ray diffraction for Li{sub 1.2}V{sub 3}O{sub 8}. Calculations were also performed for the two monoclinic phases at intermediate Li compositions, for which no structural information is available. Calculations at these compositions are based on hypothetical Li configurations suggested by the ordering of vacancy energies for Li{sub 4}V{sub 3}O{sub 8} and tetrahedral site energies in Li{sub 1.5}V{sub 3}O{sub 8}. The internal energy curves for the two phases cross near 1+x=3. Predicted electrochemical potential curves agree well with experiment.
Date: December 1, 1997
Creator: R. Benedek, R.; Thackeray, M.M. & Yang, I.H.
Partner: UNT Libraries Government Documents Department

A method for treating electrolyte to remove Li{sub 2}O

Description: Electrorefining has been used in processes for recovering uranium and plutonium metals from spent nuclear fuel. The electrorefining is performed in an electrochemical cell in which the chopped fuel elements from the reactor forms the anode, the electrolyte, preferably, is the fused eutectic salt of the LiCl-KCl which contain UCl{sub 3} and PuCl{sub 3}. Purified metal collected at the cathode collects at the bottom of the cell. This invention provides a method for removing lithium oxide from the electrolyte salt, with the end formation of a solid lithium-aluminium alloy.
Date: April 1, 1998
Creator: Tomczuk, Z.; Miller, W.E.; Johnson, G.K. & Willit, J.L.
Partner: UNT Libraries Government Documents Department

Hysteresis in Thin-Film Rechargeable Lithium Batteries

Description: Discharge - charge cycling of thin-film rechargeable lithium batteries with an amorphous or nanocrystalline LiXMn2.Y04 cathode reveals evidence for a true hysteresis in the lithium insertion reaction. This is compared with an apparent hysteresis attributed to a kinetically hindered phase transition near 3 V for batteries with either a crystalline or a nanocrystalline LiJ@Yo4 cathode.
Date: April 25, 1999
Creator: Bates, J.B.; Dudney, N.J.; Evans, C.D. & Hart, F.X.
Partner: UNT Libraries Government Documents Department

Spinel electrodes for rechargeable lithium batteries.

Description: This paper gives a historical account of the development of spinel electrodes for rechargeable lithium batteries. Research in the late 1970's and early 1980's on high-temperature . Li/Fe{sub 3}O{sub 4} cells led to the evaluation of lithium spinels Li[B{sub 2}]X{sub 4} at room temperature (B = metal cation). This work highlighted the importance of the [B{sub 2}]X{sub 4}spinel framework as a host electrode structure and the ability to tailor the cell voltage by selection of different B cations. Examples of lithium-ion cells that operate with spinel anode/spinel cathode couples are provided. Particular attention is paid to spinels within the solid solution system Li{sub 1+x}Mn{sub 2-x}O{sub 4} (0 {le} x {le} 0.33).
Date: November 10, 1999
Creator: Thackeray, M. M.
Partner: UNT Libraries Government Documents Department

Molecular dynamic simulations of the lithium coordination environment in phosphate glasses

Description: A molecular dynamics (MD) study of the lithium ultraphosphate glass series, xLi{sub 2}O{center_dot}(1{minus}x)P{sub 2}O{sub 5} (0 {le} x &lt; 0.5) was used to investigate the changes in the Li environment with increasing modifier concentration. The results from the MD simulations indicate that no major structural variations in the Li coordination environment are observed. Changes in the type of oxygen coordinated to the modifier are observed and correlate with the T{sub g} minimum. Additionally, changes in the number of shared phosphorus vertices are observed with increasing modifier concentration, in support of recent models involving the role of the modifier in the extended range structure of phosphate glasses. Empirical calculations of the {sup 6}Li NMR chemical shifts directly from the MD simulation structures is also reported and compared to recent experimental solid-state NMR results.
Date: June 7, 2000
Creator: ALAM,TODD M.; LIANG,JIANJIE & CYGAN,RANDALL T.
Partner: UNT Libraries Government Documents Department

Ionic modeling of lithium manganese spinel materials for use in rechargeable batteries

Description: In order to understand and evaluate materials for use in Li ion rechargeable battery electrodes, we have modeled the crystal structures of various Mn oxide and Li Mn oxide compounds. We have modeled the MnO{sub 2} polymorphs and several spinels with intermediate compositions based on the amount of Li inserted into the tetrahedral site. 3-D representations of the structures provide a basis for identifying site occupancies, coordinations, Mn valence, order-disorder, and potentially new dopants for enhanced cathode behavior. XRD simulations of the crystal structures provide good agreement with observed patterns for synthesized samples. Ionic modeling of these materials consists of an energy minimization approach using Coulombic, repulsive, and van der Waals interactions. Modeling using electronic polarizabilities (shell model) allows a systematic analysis of changes in lattice energy, cell volume, and the relative stability of doped structures using ions such as Al, Ti, Ni, and Co.
Date: December 31, 1995
Creator: Cygan, R.T.; Westrich, H.R. & Doughty, D.H.
Partner: UNT Libraries Government Documents Department

Plasma Synthesis of Lithium Based Intercalation Powders for Solid Polymer Electrolyte Batteries

Description: The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O2 gas wherein the O2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to form a very pure single phase product.
Date: January 4, 2005
Creator: Kong, Peter C.; Pink, Robert J. & Nelson, Lee O.
Partner: UNT Libraries Government Documents Department

Study of Mn dissolution from LiMn{sub 2}O{sub 4} spinel electrodes using rotating ring-disk collection experiments

Description: The goal of this research was to measure Mn dissolution from a thin porous spinel LiMn{sub 2}O{sub 4} electrode by rotating ring-disk collection experiments. The amount of Mn dissolution from the spinel LiMn{sub 2}O{sub 4} electrode under various conditions was detected by potential step chronoamperometry. The concentration of dissolved Mn was found to increase with increasing cycle numbers and elevated temperature. The dissolved Mn was not dependent on disk rotation speed, which indicated that the Mn dissolution from the disk was under reaction control. The in situ monitoring of Mn dissolution from the spinel was carried out under various conditions. The ring currents exhibited maxima corresponding to the end-of-charge (EOC) and end-of-discharge (EOD), with the largest peak at EOC. The results suggest that the dissolution of Mn from spinel LiMn{sub 2}O{sub 4} occurs during charge/discharge cycling, especially in a charged state (at &gt;4.1 V) and in a discharged state (at &lt;3.1 V). The largest peak at EOC demonstrated that Mn dissolution took place mainly at the top of charge. At elevated temperatures, the ring cathodic currents were larger due to the increase of Mn dissolution rate.
Date: July 1, 2003
Creator: Wang, Li-Fang; Ou, Chin-Ching; Striebel, Kathryn A. & Chen, Jenn-Shing
Partner: UNT Libraries Government Documents Department

Structure and electrochemical potential simulation for the cathode material Li(1+x)V(3)O(8).

Description: The structure and electrochemical potential of monoclinic Li{sub 1+x}V{sub 3}O{sub 8} were calculated within the local-density-functional-theory framework by use of plane-wave-pseudopotential methods. Special attention was given to the compositions 1+x=1.2 and 1+x=4, for which x-ray diffraction structure refinements are available. The calculated low-energy configuration for 1+x=4 is consistent with the three Li sites identified in x-ray diffraction measurements and predicts the position of the unobserved Li. The location of the tetrahedrally coordinated Li in the calculated low-energy configuration for 1+x=1.5 is consistent with the structure measured by x-ray diffraction for Li{sub 1.2}V{sub 3}O{sub 8}. Calculations were also performed for the two monoclinic phases at intermediate Li compositions, for which no structural information is available. Calculations at these compositions are based on hypothetical Li configurations suggested by the ordering of vacancy energies for Li{sub 4}V{sub 3}O{sub 8} and tetrahedral site energies in Li{sub 1.5}V{sub 3}O{sub 8}. The internal energy curves for the two phases cross near 1+x=3. Predicted electrochemical potential curves agree well with experiment.
Date: December 5, 1997
Creator: Benedek, R.; Thackeray, M. M. & Yang, L. H.
Partner: UNT Libraries Government Documents Department

Comparative costs of flexible package cells and rigid cells for lithium-ionhybrid electric vehicle batteries.

Description: We conducted a design study to compare the manufacturing costs at a level of 100,000 hybrid vehicle batteries per year for flexible package (Flex) cells and for rigid aluminum container (Rigid) cells. Initially, the Rigid cells were considered to have welded closures and to be deep-drawn containers of about the same shape as the Flex cells. As the study progressed, the method of fabricating and sealing the Rigid cells was expanded to include lower cost options including double seaming and other mechanically fastened closures with polymer sealants. Both types of batteries were designed with positive electrodes containing Li(Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3})O{sub 2} and graphite negative electrodes. The use of a different combination of lithium-ion electrodes would have little effect on the difference in costs for the two types of cells. We found that 20-Ah cells could be designed with excellent performance and heat rejection capabilities for either type of cell. Many parts in the design of the Flex cells are identical or nearly identical to those of the Rigid Cell, so for these features there would be no difference in the cost of manufacturing the two types of batteries. We judged the performance, size and weight of the batteries to be sufficiently similar that the batteries would have the same value for their application. Some of the design features of the Flex cells were markedly different than those of the deep-drawn and welded Rigid cells and would result in significant cost savings. Fabrication and processing steps for which the Flex cells appear to have a cost advantage over these Rigid cells are (1) container fabrication and sealing, (2) terminal fabrication and sealing, and (3) intercell connections. The costs of providing cooling channels adjacent to the cells and for module and battery hardware appear to favor Rigid cell batteries slightly. Overall, ...
Date: November 28, 2006
Creator: Nelson, P. A. & Jansen, A. N.
Partner: UNT Libraries Government Documents Department

THE HIGH TEMPERATURE CHEMICAL REACTIVITY OF LI2O

Description: The ultimate purpose of this study was to investigate the use of a Li-Ca mixture for direct reduction of actinide oxides to actinide metals at temperatures below 1500 C. For such a process to be successful, the products of the reduction reaction, actinide metals, Li{sub 2}O, and CaO, must all be liquid at the reaction temperature so the resulting actinide metal can coalesce and be recovered as a monolith. Since the established melting temperature of Li{sub 2}O is in the range 1427-1700 C and the melting temperature of CaO is 2654 C, the Li{sub 2}O-CaO (lithium oxidecalcium oxide) pseudo-binary system was investigated in an attempt to identify the presence of low-melting eutectic compositions. The results of our investigation indicate that there is no evidence of ternary Li-Ca-O phases or solutions melting below 1200 C. In the 1200-1500 C range utilizing MgO crucibles, there is some evidence for the formation of a ternary phase; however, it was not possible to determine the phase composition. The results of experiments performed with ZrO{sub 2} crucibles in the same temperature range did not show the formation of the possible ternary phase seen in the earlier experiment involving MgO crucibles, so it was not possible to confirm the possibility that a ternary Li-Ca-O or Li-Mg-O phase was formed. It appears that the Li{sub 2}O-CaO materials reacted, to some extent, with all of the container materials, alumina (Al{sub 2}O{sub 3}), magnesia (MgO), zirconia (ZrO{sub 2}), and 95% Pt-5% Au; however, to clarify the situation additional experiments are required. In addition to the primary purpose of this study, the results of this investigation led to the conclusions that: (1) The melting temperature of Li{sub 2}O may be as low as 1250 C, which is considerably lower than the previously published values in the range 1427-1700 C; (2) ...
Date: November 13, 2009
Creator: Kessinger, G. & Missimer, D.
Partner: UNT Libraries Government Documents Department

Sputter deposition and characterization of lithium cobalt oxide thin films and their applications in thin-film rechargeable lithium batteries

Description: Li Co oxide thin films were deposited by rf magnetron sputtering of a LiCoO{sub 2} target in a 3:1 Ar/O{sub 2} mixture gas. From proton-induced gamma-ray emission analysis and Rutherford backscattering spectrometry, the average composition of these films was determined to be Li{sub 1.15}CoO{sub 2.16}. X-ray powder diffraction patterns of films annealed in air at 500-700 C were consistent with regular rhombohedral structure of crystalline LiCoO{sub 2}. Discharge curves of thin film lithium cells with amoprohous LiCoO{sub 2} showed no obvious structural transition between 4.2 and 1.5 V. Shape of discharge curves of cells with polycrystalline cathodes were consistent with a two-phase voltage plateau at {similar_to}3.9 V with a relatively large capacity and two additional smaller plateaus at higher voltages. Cells with the 700 C annealed cathodes showed a capacity loss of {similar_to} after 1000 cycles between 4.2 and 3.0 V.
Date: January 1, 1996
Creator: Wang, B.; Bates, J.B.; Luck, C.F.; Sales, B.C.; Zuhr, R.A. & Robertson, J.D.
Partner: UNT Libraries Government Documents Department

Electrochromic lithium nickel oxide by pulsed laser deposition and sputtering

Description: Thin films of lithium nickel oxide were deposited by sputtering and pulsed laser deposition (PLD) from targets of pressed LiNiO{sub 2} powder. The composition and structure of these films were analyzed using a variety of techniques, such as nuclear-reaction analysis, Rutherford backscattering spectrometry (RBS), x-ray diffraction, infrared spectroscopy, and atomic force microscopy. Crystalline structure, surface morphology and chemical composition of Li{sub x}Ni{sub 1{minus}x}O thin films depend strongly on deposition oxygen pressure, temperature as well as substrate-target distance. The films produced at temperatures lower than 600 C spontaneously absorb CO{sub 2} and H{sub 2}O at their surface once they are exposed to the air. The films deposited at 600 C proved to be stable in air over a long period. Even at room temperature the PLD films are denser and more stable than sputtered films. RBS determined the composition of the best films to be Li{sub 0.5}Ni{sub 0.5}O deposited by PLD at 60 mTorr O{sub 2} pressure. Electrochemical tests show that the films exhibit excellent reversibility in the range 1.0 V to 3.4 V versus lithium. Electrochemical formatting which is used to develop electrochromism in other films is not needed for the stoichiometric films. The optical transmission range is almost 70% at 550 nm for 150-nm thick films. Devices made from these films were analyzed using novel reference electrodes and by disassembly after cycling.
Date: September 1, 1996
Creator: Rubin, M.; Wen, S.J.; Richardson, T.; Kerr, J.; Rottkay, K. von & Slack, J.
Partner: UNT Libraries Government Documents Department

5-Volt and 4.6 V plateaus in LiMn{sub 2}O{sub 4} thin films

Description: Additional plateaus with median voltages of {similar_to}4.6 V, and {similar_to}5 V have been observed on charging thin film lithium batteries with crystalline LiMn{sub 2}O{sub 4} cathodes to 5.3 V. Total charge extracted from the 4 V and the two additional plateaus corresponded to about 1Li/Mn{sub 2}O{sub 4}, but the distribution of capacity among the three plateaus varied from film to film. It is speculated that the additional plateaus result from formation of mixed spinel structures in which a fraction of the 8a sites areoccupied by Mn{sup 2+} or Mn{sup 4+} ions and a fraction of the Li{sup +} ions occupy the 16d sites. After charging to 5.3 V, the 4.6 V plateau disappeared, and the capacity of the 4 V plateau increased at the expense of that of the 5 V plateau. The latter change is attributed to movement of Mn{sup 3+} or Mn{sup 5+} ions from 8a to 16d sites.
Date: January 1, 1996
Creator: Bates, J.B.; Lubben, D.; Dudney, N.J.; Zuhr, R.A. & Hart, F.X.
Partner: UNT Libraries Government Documents Department

Thin-film rechargeable lithium batteries for implantable devices

Description: Thin films of LiCoO{sub 2} have been synthesized in which the strongest x-ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin-film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001 %/cycle or less. The reliability and performance of Li-LiCoO{sub 2} thin-film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.
Date: May 1, 1997
Creator: Bates, J.b. & Dudney, N.J.
Partner: UNT Libraries Government Documents Department

Reinvestigation of ionic motion in amorphous materials: A power law approach to the a.c. conductivity. Progress report

Description: The motion of mobile ions in glassy materials produces a dielectric response that is characteristically non-Debye. This deviation from ideal Debye behavior is evidenced both in the a.c. conductivity, {sigma}(f), which increases anomalously as a power law of the form {sigma}(f) = {sigma}{sub 0}(1+(f/f{sub 0}){sup n}), and in the electric modulus which is better described by a stretched-exponential relaxation of the form {phi}(t) = exp({minus}(t/{tau}){sup {beta}}). The authors have examined the dielectric response of sodium germanate glasses over a wide composition range. In accordance with other studies, they observed substantial narrowing of the electric modulus with decreasing alkali content. However, no changes were evident in the power law response of the a.c. conductivity, and {sigma}(f) could be scaled to a common response curve at all compositions. This result clearly rules out inter-ionic interactions as a source for the non-Debye relaxation. The authors extended the study of sodium germanates to examine also the power law dynamics in the mixed alkali (MA) glass.
Date: January 1, 1999
Partner: UNT Libraries Government Documents Department

(6)Li, (7)Li Nuclear Magnetic Resonance Investigation of Lithium Coordination in Binary Phosphate Glasses

Description: {sup 6}Li and {sup 7}Li solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy has been used to investigate the local coordination environment of lithium in a series of xLi{sub 2}O {center_dot} (1-x)P{sub 2}O{sub 5} glasses, where 0.05 {le} x {le} 0.55. Both the {sup 6}Li and {sup 7}Li show chemical shift variations with changes in the Li{sub 2}O concentration, but the observed {sup 6}Li NMR chemical shifts closely approximate the true isotropic chemical shift and can provide a measure of the lithium bonding environment. The {sup 6}Li NMR results indicate that in this series of lithium phosphate glasses the Li atoms have an average coordination between four and five. The results for the metaphosphate glass agree with the coordination number and range of chemical shifts observed for crystalline LiPO{sub 3}. An increase in the {sup 6}Li NMR chemical shift with increasing Li{sub 2}O content was observed for the entire concentration range investigated, correlating with increased cross-linking of the phosphate tetrahedral network by O-Li-O bridges. The {sup 6}Li chemical shifts were also observed to vary monotonically through the anomalous glass transition temperature (T{sub g}) minimum. This continuous chemical shift variation shows that abrupt changes in the Li coordination environment do not occur as the Li{sub 2}O concentration is increased, and such abrupt changes can not be used to explain the T{sub g} minimum.
Date: February 8, 1999
Creator: Alam, T.M.; Boyle, T.J.; Brow, R.K. & Conzone, S.
Partner: UNT Libraries Government Documents Department

Thermal conductivity and tritium retention in Li{sub 2}O and Li{sub 2}ZrO{sub 3}

Description: Lithium oxide (Li{sub 2}O) and lithium zirconate (Li{sub 2}ZrO{sub 3}) are promising ceramic breeder materials for fusion reactor blankets. The thermal and tritium transport databases for these materials are reviewed. Algorithms are presented for predicting both the temperature distribution and the retained tritium profile across sintered-product and pebble-bed regions. Sample design calculations are also performed to demonstrate the relative advantages of each breeder ceramic. For Li{sub 2}O, the thermal conductivity of sintered-product material has been measured over a wide range of temperatures and densities. Data are also available for the effective thermal conductivity of a pebble bed (in atmospheric helium) with 55% packing fraction for the 5-mm-diameter/75%-dense pebbles. Similar results are available for sintered-product and pebble-bed (60% packing fraction for 1.2-mm-diameter/80%-dense pebbles in atmospheric He) Li{sub 2}ZrO{sub 3}. Hall and Martin model predictions are in reasonable agreement with both sets of pebble bed data. Thus, the databases and calculational algorithms are well established for performing thermal analyses. 15 refs., 5 figs.
Date: August 1, 1997
Creator: Billone, M.C.
Partner: UNT Libraries Government Documents Department

LiV{sub 2}O{sub 4}: A heavy fermion transition metal oxide

Description: The format of this dissertation is as follows. In the remainder of Chapter 1, brief introductions and reviews are given to the topics of frustration, heavy fermions and spinels including the precedent work of LiV{sub 2}O{sub 4}. In Chapter 2, as a general overview of this work the important publication in Physical Review Letters by the author of this dissertation and collaborators regarding the discovery of the heavy fermion behavior in LiV{sub 2}O{sub 4} is introduced [removed for separate processing]. The preparation methods employed by the author for nine LiV{sub 2}O{sub 4} and two Li{sub 1+x}Ti{sub 2{minus}x}O{sub 4} (x = 0 and 1/3) polycrystalline samples are introduced in Chapter 3. The subsequent structural characterization of the LiV{sub 2}O{sub 4} and Li{sub 1+x}Ti{sub 2{minus}x}O{sub 4} samples was done by the author using thermogravimetric analysis (TGA), x-ray diffraction measurements and their structural refinements by the Rietveld analysis. The results of the characterization are detailed in Chapter 3. In Chapter 4 magnetization measurements carried out by the author are detailed. In Chapter 5, after briefly discussing the resistivity measurement results including the single-crystal work by Rogers et al., for the purpose of clear characterization of LiV{sub 2}O{sub 4} it is of great importance to introduce in the following chapters the experiments and subsequent data analyses done by his collaborators. Heat capacity measurements (Chapter 6) were carried out and analyzed by Dr. C.A. Swenson, and modeled theoretically by Dr. D.C. Johnston. In Chapter 7 a thermal expansion study using neutron diffraction by Dr. O. Chmaissem et al. and capacitance dilatometry measurements by Dr. C.A. Swenson are introduced. The data analyses for the thermal expansion study were mainly done by Dr. O. Chmaissem (for neutron diffraction) and Dr. C.A. Swendon (for dilatometry), with assistances by Dr. J.D. Jorgensen, Dr. D.C. Johnston, and S. Kondo the ...
Date: February 12, 1999
Creator: Kondo, Shinichiro
Partner: UNT Libraries Government Documents Department