281 Matching Results

Search Results

Advanced search parameters have been applied.

Lipids and Phospholipase Activity of Vibrio Cholerae

Description: One purpose of this investigation is to determine the fatty acid and lipid content of typical Vibrio cholerae cells. The comparison of cholera lipid constituents with those of closely-related bacteria might be of taxonomic value. Furthermore, chemical characterization of the cholera vibrio could provide useful criteria for identification of these disease-producing microorganisms.
Date: August 1972
Creator: Brian, Buford Leo
Partner: UNT Libraries

Effects of a Methylcholanthrene-Induced Lymphosarcoma on Various Tissues of DBA/1J and Swiss White Mice

Description: This investigation was concerned with characterizing effects of this tumor line on lipid metabolism in DBA/lJ mice and serum protein levels and cellular changes in DBA/lJ and Swiss white mice. Total lipids, lipid phosphorus, neutral lipids, and changes in fatty acids were determined in liver, spleen, skin, and tumor of DBA/lJ mice bearing the lymphosarcoma at various days after injection of tumor cells.
Date: May 1973
Creator: Lindsey, Terri Jay
Partner: UNT Libraries

Disease Tissue Imaging and Single Cell Analysis with Mass Spectrometry

Description: Cells have been found to have an inherent heterogeneity that has led to an increase in the development of single-cell analysis methods to characterize the extent of heterogeneity that can be found in seemingly identical cells. With an understanding of normal cellular variability, the identification of disease induced cellular changes, known as biomarkers, may become more apparent and readily detectable. Biomarker discovery in single-cells is challenging and needs to focus on molecules that are abundant in cells. Lipids are widely abundant in cells and play active roles in cellular signaling, energy metabolism, and are the main component of cellular membranes. The regulation of lipid metabolism is often disrupted or lost during disease progression, especially in cancer, making them ideal candidates as biomarkers. Challenges exist in the analysis of lipids beyond those of single-cell analysis. Lipid extraction solvents must be compatible with the lipid or lipids of interest. Many lipids are isobaric making mass spectrometry analysis difficult without separations. Single-cell extractions using nanomanipulation coupled to mass spectrometry has shown to be an excellent method for lipid analysis of tissues and cell cultures. Extraction solvents are tunable for specific lipid classes, nanomanipulation prevents damage to neighboring cells, and lipid separations are possible through phase dispersion. The most important aspect of single-cell analysis is that it uncovers the extent of cellular heterogeneity that exists among cellular populations that remains undetected during averaged sampling.
Date: May 2017
Creator: Hamilton, Jason S
Partner: UNT Libraries

Synthesis of Phenoxyacyl-Ethanolamides and Their Effects on Fatty Acid Amide Hydrolase Activity

Description: This article discusses the synthesis of two sets of phenoxyacyl-ethanolamides from natural products, 3-n-pentadecylphenolethanolamide and cardanolethanolamide, with structural similarity to N-Acylethanolamines and characterizes their effects on the hydroltic activity of fatty acid amide hydrolase.
Date: February 20, 2014
Creator: Faure, Lionel; Nagarajan, Subbiah; Hwang, Hyeondo; Montgomery, Christa L.; Khan, Bibi Rafeiza; John, George et al.
Partner: UNT College of Arts and Sciences

Development of Extraction Techniques for the Detection of Signature Lipids from Oil

Description: Pure cultures, including Desulfovibrio vulgaris and Methanococcus maripaludus, were combined with model oil samples and oil/diesel mixtures to optimize extraction techniques of signature lipids from oil in support of investigation of microbial communities in oil deposit samples targets for microbial enhanced hydrocarbon recovery. Several techniques were evaluated, including standard phospholipid extraction, ether linked lipid for Archaeal bacterial detection, and high pressure extractiontechniques. Recovery of lipids ranged from 50-80percent as compared to extraction of the pure culture. Extraction efficiency was evaluated by the use of internal standards. Field samples will also be tested for recovery of signature lipids with optimized extraction techniques.
Date: May 17, 2010
Creator: Borglin, Sharon; Geller, Jil; Chakraborty, Romy; Hazen, Terry & Mason, Olivia
Partner: UNT Libraries Government Documents Department

Tools for characterizing biomembranes : final LDRD report.

Description: A suite of experimental nuclear magnetic resonance (NMR) spectroscopy tools were developed to investigate lipid structure and dynamics in model membrane systems. By utilizing both multinuclear and multidimensional NMR experiments a range of different intra- and inter-molecular contacts were probed within the membranes. Examples on pure single component lipid membranes and on the canonical raft forming mixture of DOPC/SM/Chol are presented. A unique gel phase pretransition in SM was also identified and characterized using these NMR techniques. In addition molecular dynamics into the hydrogen bonding network unique to sphingomyelin containing membranes were evaluated as a function of temperature, and are discussed.
Date: October 1, 2007
Creator: Alam, Todd Michael; Stevens, Mark; Holland, Gregory P. & McIntyre, Sarah K.
Partner: UNT Libraries Government Documents Department

Development of Enabling Technologies to Visualize the Plant Lipidome

Description: Improvements in mass spectrometry (MS)-based strategies for characterizing the plant lipidome through quantitative and qualitative approaches such as shotgun lipidomics have substantially enhanced our understanding of the structural diversity and functional complexity of plant lipids. However, most of these approaches require chemical extractions that result in the loss of the original spatial context and cellular compartmentation for these compounds. To address this current limitation, several technologies were developed to visualize lipids in situ with detailed chemical information. A subcellular visualization approach, direct organelle MS, was developed for directly sampling and analyzing the triacylglycerol contents within purified lipid droplets (LDs) at the level of a single LD. Sampling of single LDs demonstrated seed lipid droplet-to-droplet variability in triacylglycerol (TAG) composition suggesting that there may be substantial variation in the intracellular packaging process for neutral lipids in plant tissues. A cellular and tissue visualization approach, MS imaging, was implemented and enhanced for visualizing the lipid distributions in oilseeds. In mature cotton seed embryos distributions of storage lipids (TAGs) and their phosphatidylcholine (PCs) precursors were distribution heterogeneous between the cotyledons and embryonic axis raising new questions about extent and regulation of oilseed heterogeneity. Extension of this methodology provides an avenue for understanding metabolism in cellular (perhaps even subcellular) context with substantial metabolic engineering implications. To visualize metabolite distributions, a free and customizable application, Metabolite Imager, was developed providing several tools for spatially-based chemical data analysis. These tools collectively enable new forms of visualizing the plant lipidome and should prove valuable toward addressing additional unanswered biological questions.
Date: August 2013
Creator: Horn, Patrick J.
Partner: UNT Libraries

The Hypolipidemic Effect of Pectin and Oats

Description: Pectin and oats as two sources of dietary fiber have been suggested as having a hypolipidemic effect. Ten subjects included either twenty grams of pectin or eighty grams of rolled oats daily in their self-selected diet. A baseline for each subject was calculated from blood samples taken prior to supplementation. Fasting blood samples were also taken ten, twenty-one, and thirty-one days after beginning supplementation. All blood samples were analyzed for these values; serum cholesterol, serum trigyceride, hematocrit, hemoglobin, serum albumin, and total serum protein. No significant changes were seen in the cholesterol, hematocrit, hemoglobin, and total protein values. A significant decrease was seen in nine triglyceride values. Albumin levels showed a significant increase in all subjects. No significant differences due to the two treatments were seen.
Date: December 1981
Creator: Feilmann, Ann E. (Ann Elizabeth)
Partner: UNT Libraries

Final Report: 17th international Symposium on Plant Lipids

Description: This meeting covered several emerging areas in the plant lipid field such as the biosynthesis of cuticle components, interorganelle lipid trafficking, the regulation of lipid homeostasis, and the utilization of algal models. Stimulating new insights were provided not only based on research reports based on plant models, but also due to several excellent talks by experts from the yeast field.
Date: March 7, 2007
Creator: Benning, Christoph
Partner: UNT Libraries Government Documents Department

Biochemical and Molecular Inhibition of Plastidial Carbonic Anhydrase Reduces the Incorporation of Acetate into Lipids in Cotton Embryos and Tobacco Cell Suspensions and Leaves

Description: Article on biochemical and molecular inhibition of plastidial carbonic anhydrase reducing the incorporation of acetate into lipids in cotton embryos and tobacco cell suspensions and leaves.
Date: April 2002
Creator: Hoang, Chau V. & Chapman, Kent D.
Partner: UNT College of Arts and Sciences

Identification and quantification of lipid metabolites in cotton fibers: Reconciliation with metabolic pathway predictions from DNA databases.

Description: The lipid composition of cotton (Gossypium hirsutum, L) fibers was determined. Fatty acid profiles revealed that linolenate and palmitate were the most abundant fatty acids present in fiber cells. Phosphatidylcholine was the predominant lipid class in fiber cells, while phosphatidylethanolamine, phosphatidylinositol and digalactosyldiacylglycerol were also prevalent. An unusually high amount of phosphatidic acid was observed in frozen cotton fibers. Phospholipase D activity assays revealed that this enzyme readily hydrolyzed radioactive phosphatidylcholine into phosphatidic acid. A profile of expressed sequence tags (ESTs) for genes involved in lipid metabolism in cotton fibers was also obtained. This EST profile along with our lipid metabolite data was used to predict lipid metabolic pathways in cotton fiber cells.
Date: May 2004
Creator: Wanjie, Sylvia W.
Partner: UNT Libraries