4 Matching Results

Search Results

Advanced search parameters have been applied.

Fireside corrosion probes for fossil fuel combustion

Description: Electrochemical corrosion rate probes have been constructed and tested along with mass loss coupons in environments consisting of N2/O2/CO2/SO2 plus water vapor. Temperatures ranged from 450° to 700°C. Results show that electrochemical corrosion rates for ash-covered mild steel are a function of time, temperature, and gaseous environment. Correlation between the electrochemical and mass loss corrosion rates was poor.
Date: March 1, 2006
Creator: Covino, B. S., Jr.; Bullard, S. J.; Ziomek-Moroz, M.; Holcomb, G. R. & Eden, D. A.
Partner: UNT Libraries Government Documents Department

Understanding the operation and use of high temperature electrochemical corrosion rate probes

Description: Electrochemical corrosion rate probes were constructed and tested along with mass loss coupons in a N2/O2/CO2 plus water vapor environment. Temperatures ranged from 450 to 600 C. Corrosion rates for ash-covered mild steel, 304L SS, and 316L SS probes using electrochemical techniques were a function of time, temperature, and process environment. Correlation between electrochemical and mass loss corrosion rates was good.
Date: January 1, 2004
Creator: Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Cayard, Michael S. (InterCorr International Inc.) et al.
Partner: UNT Libraries Government Documents Department

Soil corrosion monitoring near a pipeline under CP

Description: Electrochemical noise (EN), linear polarization resistance (LPR), and harmonic distortion analysis (HDA) were used with three-electrode probes to monitor the corrosion occurring in soil in dry and wet conditions near a gas pipeline under cathodic protection. The test site was a cathodic protection (CP) test station where impressed current CP was applied to a 2 in. (5.1 cm) diameter FBE coated steel pipe using an 84 in. (0.2 m) TA-2 high-silicon cast iron anode. Electrochemical measurements were made at three locations, two inside the CP field and one outside the CP field. Electrochemical measurements were first made with the CP system off to establish the baseline corrosion and then with increasing levels of CP. The degree of protection was based on polarized potential and the adequacy of protection was determined by depolarization measurements. CP of an adjacent pipeline did not affect the measurement of either corrosion rate or pitting factor when using buried soil corrosion probes and the EN, LPR, and HDA techniques.
Date: January 1, 2005
Creator: Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, Margaret; Locke, M.L. (NW Natural) et al.
Partner: UNT Libraries Government Documents Department

Corrosion probes for fireside monitoring in coal-fired boilers

Description: Corrosion probes are being developed and combined with an existing measurement technology to provide a tool for assessing the extent of corrosion of metallic materials on the fireside in coal-fired boilers. The successful development of this technology will provide power plant operators the ability to (1) accurately monitor metal loss in critical regions of the boiler, such as waterwalls, superheaters, and reheaters; and (2) use corrosion rates as process variables. In the former, corrosion data could be used to schedule maintenance periods and in the later, processes can be altered to decrease corrosion rates. The research approach involves laboratory research in simulated environments that will lead to field tests of corrosion probes in coal-fired boilers. Laboratory research has already shown that electrochemically-measured corrosion rates for ash-covered metals are similar to actual mass loss corrosion rates. Electrochemical tests conducted using a potentiostat show the corrosion reaction of ash-covered probes at 500?C to be electrochemical in nature. Corrosion rates measured are similar to those from an automated corrosion monitoring system. Tests of corrosion probes made with mild steel, 304L stainless steel (SS), and 316L SS sensors showed that corrosion of the sensors in a very aggressive incinerator ash was controlled by the ash and not by the alloy content. Corrosion rates in nitrogen atmospheres tended to decrease slowly with time. The addition of oxygen-containing gases, oxygen and carbon dioxide to nitrogen caused a more rapid decrease in corrosion rate, while the addition of water vapor increased the corrosion rate.
Date: January 1, 2005
Creator: Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M. & Holcomb, Gordon R.
Partner: UNT Libraries Government Documents Department