254 Matching Results

Search Results

Advanced search parameters have been applied.

Holographic optical elements for the extreme-ultravioletregime

Description: As the development of extreme ultraviolet (EUV) lithography progresses, interest grows in the extension of traditional optical components to the EUV regime. The strong absorption of EUV by most materials and its extremely short wavelength, however, makes it very difficult to implement many components that are commonplace in the longer wavelength regimes. One such component is the diffractive optical element used, for example, in illumination systems to efficiently generate modified pupil fills. Here we demonstrate the fabrication and characterization of EUV binary phase-only computer-generated holograms allowing arbitrary far-field diffraction patterns to be generated.
Date: August 14, 2006
Creator: Naulleau, Patrick P.; Salmassi, Farhad; Gullikson, Eric M. & Anderson, Erik H.
Partner: UNT Libraries Government Documents Department

Strong-Strong Simulation of Long-Range Beam-Beam Effects atRHIC

Description: As the development of extreme ultraviolet (EUV) lithography progresses, interest grows in the extension of traditional optical components to the EUV regime. The strong absorption of EUV by most materials and its extremely short wavelength, however, makes it very difficult to implement many components that are commonplace in the longer wavelength regimes. One such component is the diffractive optical element used, for example, in illumination systems to efficiently generate modified pupil fills. Here we demonstrate the fabrication and characterization of EUV binary phase-only computer-generated holograms allowing arbitrary far-field diffraction patterns to be generated.
Date: June 25, 2007
Creator: Qiang, Ji; Fischer, W. & Sen, T.
Partner: UNT Libraries Government Documents Department

Delight2 Daylighting Analysis in Energy Plus: Integration and Preliminary User Results

Description: DElight is a simulation engine for daylight and electric lighting system analysis in buildings. DElight calculates interior illuminance levels from daylight, and the subsequent contribution required from electric lighting to meet a desired interior illuminance. DElight has been specifically designed to integrate with building thermal simulation tools. This paper updates the DElight capability set, the status of integration into the simulation tool EnergyPlus, and describes a sample analysis of a simple model from the user perspective.
Date: April 26, 2005
Creator: Carroll, William L. & Hitchcock, Robert J.
Partner: UNT Libraries Government Documents Department

Lighting recommendations for the Social Security Administration Frank Hagel Federal Building in Richmond CA

Description: Specific recommendations are made to improve the lighting quality and energy efficiency of the lighting system at the Social Security Administration Frank Hagel Building in Richmond, CA. The main recommendation is to replace the recessed fluorescent lighting system in the general office area with indirect lighting. Indirect lighting will improve lighting quality, will provide an energy efficient solution and will be about the same cost as the direct lighting system originally proposed.
Date: October 25, 1999
Creator: Rubinstein, Francis M.
Partner: UNT Libraries Government Documents Department

An Assessment of the U.S. Residential Lighting Market

Description: This report provides background data upon which residential lighting fixture energy conservation programs can be built. The current stock of residential lighting is described by usage level, lamp wattage, fixture type, and location within the house. Data are discussed that indicate that 25% of residential fixtures are responsible for 80% of residential lighting energy use, and that justify targeting these fixtures as candidates for retrofit with energy-efficient fixtures. Fixtures determined to have the highest energy use are hardwired ceiling fixtures in kitchens, living/family rooms, dining rooms, and outdoors. An assessment of the market for residential fixtures shows that nearly half of new residential fixtures are imported, 61% of new fixtures sold are hardwired, and about half of all new fixtures sold are for ceiling installation.
Date: October 1, 1995
Creator: Jennings, Judy; Brown, Rich; Moezzi, Mithra; Mills, Evan & Sardinsky, Robert
Partner: UNT Libraries Government Documents Department

Advancing lighting and daylighting simulation: The transition from analysis to design aid tools

Description: This paper explores three significant software development requirements for making the transition from stand-alone lighting simulation/analysis tools to simulation-based design aid tools. These requirements include specialized lighting simulation engines, facilitated methods for creating detailed simulatable building descriptions, an automated techniques for providing lighting design guidance. Initial computer implementations meant to address each of these requirements are discussed to further elaborate these requirements and to illustrate work-in-progress.
Date: May 1, 1995
Creator: Hitchcock, R.J.
Partner: UNT Libraries Government Documents Department

Basic Research Needs for Solid-State Lighting. Report of the Basic Energy Sciences Workshop on Solid-State Lighting, May 22-24, 2006

Description: The workshop participants enthusiastically concluded that the time is ripe for new fundamental science to beget a revolution in lighting technology. SSL sources based on organic and inorganic materials have reached a level of efficiency where it is possible to envision their use for general illumination. The research areas articulated in this report are targeted to enable disruptive advances in SSL performance and realization of this dream. Broad penetration of SSL technology into the mass lighting market, accompanied by vast savings in energy usage, requires nothing less. These new ?good ideas? will be represented not by light bulbs, but by an entirely new lighting technology for the 21st century and a bright, energy-efficient future indeed.
Date: May 24, 2006
Creator: Phillips, J. M.; Burrows, P. E.; Davis, R. F.; Simmons, J. A.; Malliaras, G. G.; So, F. et al.
Partner: UNT Libraries Government Documents Department

Subject Responses to Electrochromic Windows

Description: Forty-three subjects worked in a private office with switchable electrochromic windows, manually-operated Venetian blinds, and dimmable fluorescent lights. The electrochromic window had a visible transmittance range of approximately 3-60%. Analysis of subject responses and physical data collected during the work sessions showed that the electrochromic windows reduced the incidence of glare compared to working under a fixed transmittance (60%) condition. Subjects used the Venetian blinds less often and preferred the variable transmittance condition, but used slightly more electric lighting with it than they did when window transmittance was fixed.
Date: March 3, 2006
Creator: Clear, Robert; Inkarojrit, Vorapat & Lee, Eleanor
Partner: UNT Libraries Government Documents Department

Persistence of energy savings of lighting retrofit technologies at the Forrestal Building

Description: In 1989, the Forrestal Building, headquarters for the U.S. Department of Energy, was chosen for a major lighting retrofit project. The project replaced the aging fighting system newer, energy-efficient fixtures. Pacific Northwest Laboratory conducted a three-part monitoring study at the Forrestal Building to (1) characterize building energy use, (2) empirically measure savings realized by the lighting retrofit, and (3) determine the persistence of energy savings. This report summarizes the findings from the third and final monitoring phase. Two data loggers were left installed at the Forrestal Building and data were collected for a 12-month period after the lighting retrofit was completed. An analysis-of-variance test indicated that the mean monthly lighting demand is increasing. A regression analysis performed on the data indicated that the mean monthly lighting demand for workdays is increasing at a rate of 0.3652{+-}0.1101 kW/mo. The nonworkday demand is increasing at a rate of 0.3408{+-}0.1027 kW/mo. During the same period, workday mean monthly plug load demand increased 0.0912{+-}0.0275 kW/mo., while nonworkday plug loads decreased slightly. The gradual increase, though significant, is reduced when compared to the 56% savings recorded after the lighting retrofit. The increase is attributed to a combination of occupants returning to original (pre-retrofit poor) behavior and a small set of occupancy sensors being defeated by building occupants. Degradation of lighting fixtures from {open_quotes}burn-in time{close_quotes} was ruled out because all burn-in time is expected in the first few months and the increasing trend persists over the 11 months of this study. Because the lighting demand was still increasing at the end of the study, without further data collection, it was not possible to determine when the increase would level out. Therefore, the true energy savings from the lighting retrofit remain unknown.
Date: June 1, 1995
Creator: Chvala, W.D. Jr.; Wahlstrom, R.R. & Halverson, M.A.
Partner: UNT Libraries Government Documents Department

Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

Description: The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle 6 and Reflector CFL In-situ Testing of PEARL program during the period of April 2005 to October 2005, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC performed testing for the fixture samples in Cycle 6 against Energy Star residential fixture specifications during this period of time. LRC subcontracted the Reflector CFL In-situ Testing to Luminaire Testing Laboratories located at Allentown PA, and supervised this test.
Date: March 1, 2006
Creator: O'Rourke, Conan & Zhou, Yutao
Partner: UNT Libraries Government Documents Department

Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

Description: The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Six of PEARL program during the period of October 2004 to April 2005, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameters tested for CFL models in Cycle Six are 1000-hour Lumen Maintenance, Lumen Maintenance at 40% Rated Life, and Interim Life Test, along with a series of parameters verified, such as ballast electrical parameters and Energy Star label.
Date: March 1, 2006
Creator: O'Rourke, Conan & Zhou, Yutao
Partner: UNT Libraries Government Documents Department

Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

Description: The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Five and Cycle Six of PEARL program during the period of April 2004 to October 2004, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameter tested for Cycle Five is lumen maintenance at 40% rated life, and parameters tested for Cycle Six are Efficacy, CCT, CRI, Power Factor, Start Time, Warm-up Time, and Rapid Cycle Stress Test for CFLs.
Date: March 1, 2006
Creator: O'Rourke, Conan & Zhou, Yutao
Partner: UNT Libraries Government Documents Department

Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

Description: The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure of Cycle 7 of PEARL program during the period of October 2005 to March 2006, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. LRC administered the purchasing of CFL samples to test in Cycle 7, performed 100-hour seasoning for most of the CFL samples received by March 2006, and performed sphere testing for some of the CFL samples at 100 hours of life (initial measurement).
Date: May 1, 2006
Creator: O'Rourke, Conan & Zhou, Yutao
Partner: UNT Libraries Government Documents Department

Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

Description: The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Three and Cycle Four of PEARL program during the period of April 2003 to October 2003, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The parameter tested for Cycle three is lumen maintenance at 40% rated life, and parameters tested for Cycle Four are all parameters required in Energy Star specifications except lumen maintenance at 40% rated life.
Date: March 1, 2006
Creator: O'Rourke, Conan & Zhou, Yutao
Partner: UNT Libraries Government Documents Department

University of Nevada Las Vegas LED Display Engineering

Description: The primary objective of this part of the project is to develop and implement a method that compensates for the inefficiency of the green LED. The proposed engineering solution which will be the backbone of this project will be to use RGBW combination in every pixel to save energy. Two different RGBW geometrical pixel configurations will be implemented and compared against traditional LED configurations. These configurations will be analyzed for energy efficiency while keeping the quality of the display the same. Cost of the addition of white LEDs to displays along with energy cost savings will be presented and analyzed.
Date: August 31, 2010
Partner: UNT Libraries Government Documents Department

Effective Conveyor Belt Inspection for Improved Mining Productivity

Description: This document details progress on the project entitled ''Effective Conveyor Belt Inspection for Improved Mining Productivity'' during the period from November 15, 2004 to May 14, 2004. Highlights include fabrication of an improved LED lightbar, fabrication of a line-scan sensor head for the Smart-Camera based prototype, and development of prototype vulcanized splice detection algorithms.
Date: June 1, 2006
Creator: Fromme, Chris
Partner: UNT Libraries Government Documents Department

Michigan State Code Adoption Analysis: Cost-Effectiveness of Lighting Requirements - ASHRAE/IESNA 90.1-2004

Description: This report documents PNNL's analysis of the potential energy effect and cost-effectiveness of the lighting requirements in ASHRAE/IESNA 90.1-2004 if this energy code is adopted in the state of Michigan, instead of the current standard.
Date: September 29, 2006
Creator: Richman, Eric E.
Partner: UNT Libraries Government Documents Department