219 Matching Results

Search Results

Advanced search parameters have been applied.

Investigations of silica alcogel aging using coherent light

Description: Light scattering methods have previously been used to monitor the formation of gels. In this report we present new light scattering techniques to study the properties of silica alcogels during the aging process. Monitoring one particular polarization transformation of scattered light with time reveals a clear increase in internal strain in standing alcogels with time. The stress birefringence coefficient of an acid-catalyzed SiO{sub 2} gel was found to be 3.4 x 10{sup 12} Brewsters. Additionally, the evolution of the stiffness of alcogels was investigated using laser speckle methods. Specifically, image analysis of specklegrams obtained during multi-frequency acoustic excitation of aging gels was used to non-destructively measure the hardening of alcogels. For an acid catalyzed gel with a theoretical density of {approx}0.05 g/cm{sup 3} SiO{sub 2}, the rate of hardening is found to be greatest between gelation and 2X the gel time, and drops considerably thereafter. The Young's modulus of the gel can be monitored over time with this method and was found to range from 6.2 x 10{sup 3} N/m{sup 2} after 6 hours to 2.2 x 10{sup 5} N/m{sup 2} after 24 hours for acid-catalyzed silica gels.
Date: June 1, 2001
Creator: Hunt, Arlon J. & Ayers, Michael R.
Partner: UNT Libraries Government Documents Department

Fabrication and light scattering study of multi-responsive nanostructured hydrogels and water-soluble polymers.

Description: Monodispersed microgels composed of poly-acrylic acid (PAAc) and poly(N-isopropylacrylamide) (PNIPAM) interpenetrating networks were synthesized by 2-step method with first preparing PNIPAM microgel and then polymerizing acrylic acid that interpenetrates into the PNIPAM network. The semi-dilute aqueous solutions of the PNIPAM-PAAc IPN microgels exhibit an inverse thermo-reversible gelation. Furthermore, IPN microgels undergo the reversible volume phase transitions in response to both pH and temperature changes associated to PAAc and PNIPAM, respectively. Three applications based on this novel hydrogel system are presented: a rich phase diagram that opens a door for fundamental study of phase behavior of colloidal systems, a thermally induced viscosity change, and in situ hydrogel formation for controlled drug release. Clay-polymer hydrogel composites have been synthesized based on PNIPAM gels containing 0.25 to 4 wt% of the expandable smectic clay Na-montmorillonite layered silicates (Na-MLS). For Na-MLS concentrations ranging from 2.0 to 3.2 wt%, the composite gels have larger swelling ratio and stronger mechanical strength than those for a pure PNIPAM. The presence of Na-MLS does not affect the value of the lower critical solution temperature (LCST) of the PNIPAM. Surfactant-free hydroxypropyl cellulose (HPC) microgels have been synthesized in salt solution. In a narrow sodium chloride concentration range from 1.3 to 1.4 M, HPC chains can self-associate into colloidal particles at room temperature. The microgel particles were then obtained in situ by bonding self-associated HPC chains at 23 0C using divinyl sulfone as a cross-linker. The volume phase transition of the resultant HPC microgels has been studied as a function of temperature at various salt concentrations. A theoretical model based on Flory-Huggins free energy consideration has been used to explain the experimental results. Self-association behavior and conformation variation of long chain branched (LCB) poly (2-ethyloxazoline) (PEOx) with a CH3-(CH2)17 (C18) modified surface are investigated using light scattering techniques in various ...
Date: December 2003
Creator: Xia, Xiaohu
Partner: UNT Libraries

Synthesis and study of crystalline hydrogels, guided by a phase diagram.

Description: Monodispersed nanoparticles of poly-N-isopropylacrylamide-co-allylamine (PNIPAM-co-allylamine) and PNIPAM-co-acrylic acid (AA) have been synthesized and used as building blocks for creating three-dimensional networks. The close-packed PNIPAM-co-allylamine and PNIPAM-co-AA nanoparticles were stabilized by covalently bonding neighboring particles at room temperature and at neutral pH; factors which make these networks amicable for drug loading and release. Controlled release studies have been performed on the networks using dextran markers of various molecular weights as model macromolecular drugs. Drug release was quantified under various physical conditions including a range of temperature and molecular weight. These nanoparticle networks have several advantages over the conventional bulk gels for controlling the release of biomolecules with large molecular weights. Monodispersed nanoparticles of poly-N-isopropylacrylamide-co-allylamine (PNIPAM-co-allylamine) can self-assemble into crystals with a lattice spacing on the order of the wavelength of visible light. By initiating the crystallization process near the colloidal crystal melting temperature, while subsequently bonding the PNIPAM-co-allylamine particles below the glass transition temperature, a nanostructured hydrogel has been created. The crystalline hydrogels exhibit iridescent patterns that are tunable by the change of temperature, pH value or even protein concentration. This kind of soft and wet hydrogel with periodic structures may lead to new sensors, devices, and displays operating in aqueous solutions, where most biological and biomedical systems reside. The volume-transition equilibrium and the interaction potential between neutral PINPAM particles dispersed in pure water were investigated by using static and dynamic light-scattering experiments. From the temperature-dependent size and energy parameters, the Sutherland-like potential provides a reasonable representation of the inter-particle potential for PNIPAM particles in swollen and in collapsed phases. An aqueous dispersion of PNIPAM particles can freeze at both high and low temperatures. At low temperatures, the freezing occurs at a large particle volume fraction, similar to that in a hard-sphere system; while at high temperature, the freezing occurs at ...
Date: December 2004
Creator: Huang, Gang
Partner: UNT Libraries

Spontaneous Pattern Formation on Ion Bombarded Si(001)

Description: Pattern formation on surfaces undergoing low-energy ion bombardment is a common phenomenon. Here, a recently developed in situ spectroscopic light scattering technique was used to monitor periodic ripple evolution on Si(001) during Ar(+) sputtering. Analysis of the rippling kinetics indicated that under high flux sputtering at low temperatures the concentration of mobile species on the surface is saturated, and, surprisingly, is both temperature and ion flux independent. This is due to an effect of ion collision cascades on the concentration of mobile species. This new understanding of surface dynamics during sputtering allowed us to measure straighforwardly the activation energy for atomic migration on the surface to be 1.2+0.1 eV. The technique is generalizable to any material, including high temperature and insulating materials for which surface migration energies are notoriously difficult to measure.
Date: April 26, 1999
Creator: Chason, Eric; Erlebacher, Jonah, Aziz, Michael J.; Floro, Jerrold A. & Sinclair, Michael B.
Partner: UNT Libraries Government Documents Department

Light scattering studies of an electrorheological fluid in oscillatory shear

Description: We have conducted a real time, two-dimensional light scattering study of the nonlinear dynamics of field-induced structures in an electrorheological fluid subjected to oscillatory shear. We have developed a kinetic chain model of the observed dynamics by considering the response of a fragmenting/aggregating particle chain to the prevailing hydrodynamic and electrostatic forces. This structural theory is then used to describe the nonlinear rheology of ER fluids.
Date: December 31, 1995
Creator: Martin, J.E. & Odinek, J.
Partner: UNT Libraries Government Documents Department

Polymer hydrogel nanoparticles and their networks

Description: The thermally responsive hydroxypropyl cellulose (HPC) hydrogel nanoparticles have been synthesized and characterized. The HPC particles were obtained by chemically crosslinking collapsed HPC polymer chains in water-surfactant (dodecyltrimethylammonium bromide) dispersion above the lower critical solution temperature (LCST) of the HPC. The size distributions of microgel particles, measured by dynamic light scattering, have been correlated with synthesis conditions including surfactant concentration, polymer concentration, and reaction temperature. The swelling and phase transition properties of resultant HPC microgels have been analyzed using both static and dynamic light scattering techniques. By first making gel nanoparticles and then covalently bonding them together, we have engineered a new class of gels with two levels of structural hierarchy: the primary network is crosslinked polymer chains in each individual particle, while the secondary network is a system of crosslinked nanoparticles. The covalent bonding contributes to the structural stability of the nanostructured gels, while self-assembly provides them with crystal structures that diffract light, resulting in colors. By using N-isopropylacrylamide copolymer hydrogel nanoparticles, we have synthesized nanoparticle networks that display a striking iridescence like precious opal but are soft and flexible like gelatin. This is in contrast to previous colored hydrogels, which were created either by adding dyes or fluorescent, or by organic solvent or by embedding a colloidal crystal array of polymer solid spheres . Creating such periodic 3D structures in materials allows us to obtain useful functionality not only from the constituent building blocks but also from the long-range ordering that characterizes these structures. Hydroxypropyl cellulose (HPC) and poly (acrylic acid ) (PAA) complexes were studied using turbidity measurement and laser light scattering. The phase transition temperature of the complexes is found to depend on pH and molecular weights of PAA and HPC. The driving force for this phenomenon is due to the hydrogen bonding and hydrophobic interaction ...
Date: August 2002
Creator: Lu, Xihua
Partner: UNT Libraries

Operation of the NSTX Thomson Scattering System

Description: The NSTX multi-point Thomson scattering system has been in operation for nearly two years and provides routine Te(R,t) and ne(R,t) measurements. The laser beams from two 30-Hz Nd:YAG lasers are imaged by a spherical mirror onto 36 fiber-optics bundles. In the present configuration, the output ends of 20 of these bundles are instrumented with filter polychromators and avalanche photodiode detectors. In this paper, we discuss the laser implementation and the installed collection optics. We follow with examples of raw and analyzed data. We close with some comments about calibration.
Date: September 3, 2002
Creator: LeBlanc, B.P.; Bell, R.E.; Johnson, D.W.; Hoffman, D.E.; Long, D.C. & and Palladino, R.W.
Partner: UNT Libraries Government Documents Department

Microwave Scattering System Design for {rho}{sub i}e-Scale Turbulence Measurements on NSTX

Description: Despite suppression of {rho}{sub i}-scale turbulent fluctuations, electron thermal transport remains anomalous in NSTX. For this reason, a microwave scattering system will be deployed to directly observe the w and k spectra of {rho}{sub e}-scale turbulent fluctuations and characterize the effect on electron thermal transport. The scattering system will employ a Gaussian probe beam produced by a high power 280 GHz microwave source. A five-channel heterodyne detection system will measure radial turbulent spectra in the range |k{sub r}| = 0-20 cm{sup -1}. Inboard and outboard launch configurations cover most of the normalized minor radius. Improved spatial localization of measurements is achieved with low aspect ratio and high magnetic shear configurations. This paper will address the global design of the scattering system, such as choice of frequency, size, launching system, and detection system.
Date: May 19, 2004
Creator: Smith, D.R.; Mazzucato, E.; Munsat, T.; Park, H.; Johnson, D.; Lin, L. et al.
Partner: UNT Libraries Government Documents Department

Structural Formation Studies of UV-Catalyzed Gels and Aerogels byLight Scattering

Description: The skeletal structure of aerogel is determined before, during, and after the gel is formed. Supercritical drying of aerogel largely preserves the pore structure that is determined near the time of gelation. To better understand these gel formation mechanisms we carried out measurements of the time evolution of light scattering in a series of gels prepared without conventional acid or base catalysis. Instead, ultraviolet light was used to catalyze the formation of silica gels made from the hydrolysis of tetraethylorthosilicate and partly prehydrolyzed tetraethylorthosilicate in ethanol. Time evolution of light scattering provides information regarding the rate and geometrical nature of the assembly of the primary silica particles formed in the sol. UV-catalyzed gels show volumetric growth typical of acid-catalyzed gels, except when UV exposure is discontinued at the gel point, where gels then show linear chain formation typical of base-catalyzed gels. Long term UV exposure leads to coarsening of the pore network, a decrease in the clarity of the aerogel, and an increase in the surface area of the aerogel. Additionally, UV exposure up to the gel point leads to increased crystallinity in the final aerogel.
Date: April 1, 1998
Creator: Hunt, Arlon J. & Ayers, Michael R.
Partner: UNT Libraries Government Documents Department

Investigation of near infrared autofluorescence imaging for the detection of breast cancer

Description: Detection of breast cancer in fresh tissue obtained from surgery is investigated using Near-infrared autofluorescence imaging under laser excitation at 532-nm and 632.8-nm. The differences in intensity between the three main components of breast tissue (cancer, fibrous and adipose) are estimated and compared to those obtained from cross-polarized light scattering images recorded under polarized illumination at 700-nm. The optical spectroscopic images for each tissue sample were subsequently compared with the histopathology slides. The experimental results indicate that the intensity of the near-infrared emission is considerably different in breast cancer compared to that of the adjacent non-neoplastic tissues (adipose and fibrous tissue). The experimental results suggest that 632.8-nm excitation offers key advantages compared to 532-nm excitation.
Date: August 19, 2005
Creator: Demos, S. G.; Bold, R.; White, R. D. & Ramsamooj, R.
Partner: UNT Libraries Government Documents Department

Imaging of Tissue Micro-Structures using a Multi-Modal Microscope Design

Description: We investigate a microscope design that offers high signal sensitivity and hyperspectral imaging capabilities and allows for implementation of various optical imaging approaches while its operational complexity is minimized. This system utilizes long working distance microscope objectives that enable for off-axis illumination of the tissue thereby allowing for excitation at any optical wavelength and nearly eliminating spectral noise from the optical elements. Preliminary studies using human and animal tissues demonstrate the feasibility of this approach for real-time imaging of intact tissue microstructures using autofluorescence and light scattering imaging methods.
Date: August 12, 2005
Creator: Demos, S G; Lieber, C A; Lin, B & Ramsamooj, R
Partner: UNT Libraries Government Documents Department

Evaluation of optical imaging and spectroscopy approaches for cardiac tissue depth assessment

Description: NIR light scattering from ex vivo porcine cardiac tissue was investigated to understand how imaging or point measurement approaches may assist development of methods for tissue depth assessment. Our results indicate an increase of average image intensity as thickness increases up to approximately 2 mm. In a dual fiber spectroscopy configuration, sensitivity up to approximately 3 mm with an increase to 6 mm when spectral ratio between selected wavelengths was obtained. Preliminary Monte Carlo results provided reasonable fit to the experimental data.
Date: February 13, 2008
Creator: Lin, B; Matthews, D; Chernomordik, V; Gandjbakhche, A; Lane, S & Demos, S G
Partner: UNT Libraries Government Documents Department

Extending the size-parameter range for plane-wave light scattering from infinite homogeneous circular cylinders

Description: We have developed an algorithm that extends the possible size-parameter range for the calculation of plane-wave light scattering from infinite homogeneous circular cylinders using a Mie-type analysis. Our algorithm is based on the calculation of the ratios of Bessel functions instead of calculating the Bessel functions or their logarithmic derivatives directly. We have found that this algorithm agrees with existing methods (when those methods converge). We have also found that our algorithm converges in cases of very large size parameters, in which case other algorithms often do not.
Date: April 12, 2005
Creator: Hau-Riege, S
Partner: UNT Libraries Government Documents Department

PSTD Simulations of Multiple Light Scattering in 3-D Macrocsopic Random Media

Description: We report a full-vector, three-dimensional, numerical solution of Maxwell's equations for optical propagation within, and scattering by, a random medium of macroscopic dimensions. The total scattering cross-section is determined using the pseudospectral time-domain technique. Specific results reported in this Paper indicate that multiply scattered light also contains information that can be extracted by the proposed cross-correlation analysis. On a broader perspective, our results demonstrate the feasibility of accurately determining the optical characteristics of arbitrary, macroscopic random media, including geometries with continuous variations of refractive index. Specifically, our results point toward the new possibilities of tissue optics--by numerically solving Maxwell's equations, the optical properties of tissue structures can be determined unambiguously.
Date: October 19, 2005
Creator: Tseng, S H; Taflove, A; Maitland, D & Backman, V
Partner: UNT Libraries Government Documents Department

Modeling Activities in the Department of Energy’s Atmospheric Sciences Program

Description: The Department of Energy's Atmospheric Science Program (ASP) conducts research pertinent to radiative forcing of climate change by atmospheric aerosols. The program consists of approximately 40 highly interactive peer-reviewed research projects that examine aerosol properties and processes and the evolution of aerosols in the atmosphere. Principal components of the program are instrument development, laboratory experiments, field studies, theoretical investigations, and modeling. The objectives of the Program are to 1) improve the understanding of aerosol processes associated with light scattering and absorption properties and interactions with clouds that affect Earth's radiative balance and to 2) develop model-based representations of these processes that enable the effects of aerosols on Earth's climate system to be properly represented in global-scale numerical climate models. Although only a few of the research projects within ASP are explicitly identified as primarily modeling activities, modeling actually comprises a substantial component of a large fraction of ASP research projects. This document describes the modeling activities within the Program as a whole, the objectives and intended outcomes of these activities, and the linkages among the several modeling components and with global-scale modeling activities conducted under the support of the Department of Energy's Climate Sciences Program and other aerosol and climate research programs.
Date: March 1, 2009
Creator: Fast, Jerome D.; Ghan, Steven J. & Schwartz, Stephen E.
Partner: UNT Libraries Government Documents Department

Year-round observations of carbon biomass and flux variability in the Southern Ocean

Description: Three Carbon Explorer (CE) floats profiling to kilometer depths in the Southern Ocean tracked dawn-dusk variations of mixing/stratification, particulate organic carbon (POC), and light scattering and sedimentation at 100, 250, and 800 m continuously from January 2002 to April 2003. Data were analyzed in conjunction with contemporaneous satellite winds and chlorophyll and derived subsurface light fields. The CE deployed at 66{sup o}S 172{sup o}W operated in the ice edge zone in absence of light. Two CEs deployed at 55{sup o}S 172{sup o}W recorded wintertime mixing to {approx}400 m, yet observed very different bloom dynamics and sedimentation the following spring. Four hypotheses are explored. The strongest is that shallow transient stratification of the deep winter mixed layer to shallower than photosynthetic critical depth occurred more frequently in the non-bloom/higher sedimentation case. The lower particle export to 800 m under the bloom was hypothesized to be due to higher interception of sinking carbon by a relatively starved over wintering zooplankton population. In the Southern Ocean surface phytoplankton biomass may counter indicate particle flux at kilometer depths.
Date: February 1, 2009
Creator: Bishop, James K.B. & Wood, Todd
Partner: UNT Libraries Government Documents Department


Description: In the first quarter of the project, we reviewed many past references about using light scattering to characterize particulate matters. We also constructed light sources, detection systems and PM synthesizer for the project.
Date: January 28, 2003
Creator: Wu, Sheng; Palm, Steve; Tang, Yongchun & III, William A. Goddard
Partner: UNT Libraries Government Documents Department

Aerosol optical depth estimates based on nephelometer measurements at the SGP arm site

Description: The scattering of shortwave radiation by anthropogenic aerosols during clear-sky conditions, termed direct aerosol forcing, has been estimated to be roughly 1 W/m{sup 2} on a global annual average and may be as high as 50 W/m{sup 2} locally and instantaneously new source regions. The extent of the direct aerosol forcing effect at a given time and place depends primarily in the aerosol optical depth, {tau}, as well as on other factors including the solar zenith angle, aerosol upscatter fraction, and the single scatter albedo (ratio of light scattering to total extinction). The aerosol optical depth at a given wavelength ({tau}{sub {lambda}}) can be written as the integral with height to the top of the atmosphere (toa) of the aerosol extinction coefficient, b{sub ext,p}. Where b{sub ext,p} is the sum of the aerosol extinction (b{sub ap}) and scattering (b{sub sp}) coefficients. The objectives of this research are to use nephelometer measurements of the scattering coefficient to estimate the aerosol optical depth at a specific wavelength (530 nm), and to compare these results with optical depths measured by a Multi-Filter Rotating Shadowband Radiometer (MFRSR) and Cimel Sun Photometer. This comparison will used to determine if all of the key parameters related to aerosol optical depth are being measured at the SGP ARM site.
Date: March 1996
Creator: Bergin, M. H.; Ogren, J. A. & Halthore, R.
Partner: UNT Libraries Government Documents Department

Performance of a two-mirror, four-reflection, ring-field optical system at {lambda}=13 nm

Description: Performance of an Extreme Ultraviolet Lithography (EUVL) imaging optic was characterized by printing resolution test images in resist. While features as small as 0.137 {mu}m were successfully printed, a resolution of 0.175 {mu}m better represents the performance of the system over the full 0.9 mm{sup 2} image field. The contrast of the aerial image was estimated to be about 40% or less for the fine features printed. This low contrast value is attributed to a degradation of the modulation transfer function due to presence of scattered light in the image.
Date: May 24, 1996
Creator: La Fontaine, B.; Gaines, D.P.; Kania, D.R.; Sommargren, G.E.; Baker, S.L. & Ciarlo, D.
Partner: UNT Libraries Government Documents Department

Investigation of damage in KDP using scattering techniques

Description: Interest in producing high damage threshold KH{sub 2}PO{sub 4} (KDP) and (D{sub x}H{sub 1-x}){sub 2}PO{sub 4} (DKDP)(also called KD*P) for frequency conversion and optical switching applications is driven by the requirements of the National Ignition Facility (NIF). Presently only the best crystals meet the NIF system requirements at the third harmonic (351 nm) and only after a laser conditioning process. Neither the mechanism for damage in bulk KDP nor the mechanism for conditioning is understood. As part of a development effort to increase the damage thresholds of KDP and DKDP, we have been developing techniques to pinpoint the locations where damage will initiate in the bulk material. After we find these locations we will use other measurement techniques to determine how these locations differ from the other surrounding material and why they cause damage. This will allow crystal growers to focus their efforts to improve damage thresholds. Historically damage thresholds have increased it is believed as a consequence of increased purity of the growth solution and through the use of constant filtration during the growth process. As a result we believe that damage is caused by defects in the crystals and have conducted a series of experiments using light scatter to locate these defects and to determine when and where damage occurs. In this paper we present results which show a low correlation between light scatter from bulk defects in KDP and the initiation sites for damage. We have also studied the effects of thermal conditioning on light scatter, strain induced birefringence and damage threshold. We have seen evidence that regions of high strain also exhibit lower damage threshold than the surrounding lower strain material. When thermally conditioned, these crystals show a decrease in some of the strong linear scattering features and a decrease in the strain birefringence while the ...
Date: February 12, 1997
Creator: Woods, B.; Runkel, M.; Yan, M.; Staggs, M.; Zaitseva, N.; Kozlowski, M. et al.
Partner: UNT Libraries Government Documents Department

Applications of mesoscopic physics to novel correlations and fluctuations of speckle patterns: Imaging and tomography with multiply scattered classical waves. Final report

Description: This is the final report on the grant, entitled `applications of mesoscopic physics to novel correlations and fluctuations of speckle patterns: imaging and tomography with multiply scattered classical waves`, which expired on September 14, 1994. The author summarizes the highlights of this research program, and lists the publications supported by this grant. The report is divided into sections, titled: application of mesoscopic fluctuations theory to correlations and fluctuations of multiply scattered light; quantum transport in localized electronic systems; electron-phonon inelastic scattering rate and the temperature scaling exponent in integer quantum Hall effect; high frequency quantum transport in quantum well devices.
Date: February 1, 1995
Creator: Feng, Shechao Charles
Partner: UNT Libraries Government Documents Department

The effect of pressure, isotopic (H/D) substitution, and other variables on miscibility in polymer-solvent systems. The nature of the demixing process; dynamic light scattering and small angle neutron scattering studies. Final report

Description: A research program examining the effects of pressure, isotope substitution and other variables on miscibility in polymer solvent systems is described. The techniques employed included phase equilibrium measurements and dynamic light scattering and small angle neutron scattering.
Date: January 1, 2000
Creator: Van Hook, W.A.
Partner: UNT Libraries Government Documents Department