132 Matching Results

Search Results

Advanced search parameters have been applied.

Surface Treatment to Improve Corrosion Resistance in Lead-Alloy Coolants

Description: One of the six proposed advanced reactor designs of the Generation IV Initiative, the Leadcooled Fast Reactor (LFR) possesses many characteristics that make it a desirable candidate for future nuclear energy production and responsible actinide management. These characteristics include favorable heat transfer, fluid dynamics, and neutronic performance compared to other candidate coolants. However, the use of a heavy liquid metal coolant presents a challenge for reactor designers in regards to reliable structural and fuel cladding materials in both a highly corrosive high temperature liquid metal and an intense radiation fieldi. Flow corrosion studies at the University of Wisconsin have examined the corrosion performance of candidate materials for application in the LFR concept as well as the viability of various surface treatments to improve the materials’ compatibility. To date this research has included several focus areas, which include the formulation of an understanding of corrosion mechanisms and the examination of the effects of chemical and mechanical surface modifications on the materials’ performance in liquid lead-bismuth by experimental testing in Los Alamos National Laboratory’s DELTA Loop, as well as comparison of experimental findings to numerical and physical models for long term corrosion prediction. This report will first review the literature and introduce the experiments and data that will be used to benchmark theoretical calculations. The experimental results will be followed by a brief review of the underlying theory and methodology for the physical and theoretical models. Finally, the results of theoretical calculations as well as experimentally obtained benchmarks and comparisons to the literature are presented.
Date: August 29, 2007
Creator: Allen, Todd R.; Sridharan, Kumar; Machut, McLean T. & Tan, Lizhen
Partner: UNT Libraries Government Documents Department


Description: Brillouin polyhedra for the intermetallic compounds of lithium and lead were determined using the zone theory. From these determinations, predictions and explanations of some electromagmetic and structural properties of the intermetallic compounds were made. (For Part IV see UCRL-4973.) (C.J.G.)
Date: November 13, 1959
Creator: Ramsey, W J & Jepson, J O
Partner: UNT Libraries Government Documents Department

Modeling non-isothermal intermetallic layer growth in the 63Sn-37Pb/Cu system

Description: A model describing diffusion-controlled growth of multiple intermetallic layers and the displacement of the interfaces between layers was developed and implemented in a 1-D computer code based on method-of-lines. The code was applied to analysis of intermetallic layer growth in isothermal solder aging experiments performed with 100 Sn/Cu and 63Sn-37Pb/Cu solder-substrate systems. Analyses indicated that intermetallic layer growth was consistent with a bulk diffusion mechanism involving Cu and/or Sn. In this work, nonisothermal solder-aging experiments were done with the 63Sn- 37Pb/Cu system using two temperature histories (4 cycles/day between 223-443 K, and 72 cycles/day between 223-443 K). Isothermal experiments were also done at 443 K. Thickness of Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} intermetallic layers were determined vs time for each temperature history. An updated version of the model and code were used to predict the intermetallic layer growth. Arrhenius expressions for diffusion coefficients in both Cu3Sn and Cu6Sn5 layers were determined. Agreement between prediction and experiment was generally good. In some cases, predicted layer growth was less than experiment, but within error. This paper describes the nonisothermal experiments and a comparison of predicted and observed layer growth vs time.
Date: December 31, 1996
Creator: Vianco, P.T.; Hopkins, P.L.; Erickson, K.L.; Frear, D.R. & Davidson, R.
Partner: UNT Libraries Government Documents Department

Solder Contamination

Description: There are two sources of contamination in solder alloys. The first source is trace elements from the primary metals used in the as-manufactured product, be that product in ingot, wire, or powder form. Their levels in the primary metal are determined by the refining process. While some of these trace elements are naturally occurring materials, additional contamination can result from the refining and/or forming processes. Sources include: furnace pot liners, debris on the cutting edges of shears, rolling mill rollers, etc. The types and levels of contaminants per solder alloy are set by recognized industrial, federal, military, and international specifications. For example, the 63Sn-37Pb solder purchased to the ASTM B 32 standard can have maximum levels of contamination for the following metals: 0.08(wt.)%Cu, 0.001 %Cd, 0.005%Al, 0.25%Bi, 0.03%As, 0.02%Fe, and 0.005 %Zn. A second cause of contamination in solders, and solder baths in particular, is their actual use in soldering operations. Each time a workpiece is introduced into the bath, some dissolution of the joint base metal(s), protective or solderable coatings, and fixture metal takes place which adds to contamination levels in the solder. The potential impurities include Cu; Ni; Au or other noble metals used as protective finishes and Al; Fe; and Zn to name a few. Even dissolution of the pot wall or liner is a source of impurities, typically Fe.
Date: February 22, 1999
Creator: Vianco, P.T.
Partner: UNT Libraries Government Documents Department

Microstructural changes in eutectic tin-lead alloy due to severe bending

Description: Severe plastic deformation in an eutectic tin-lead alloy is studied by imposing fast bending at room temperature, in an attempt to examine the microstructural response in the absence of thermally activated diffusion processes. A change in microstructure due to this purely mechanically imposed load is observed: the tin-rich matrix phase appears to be extruded out of the narrow region between neighboring layers of the lead-rich phase and alterations in the colony structure occur. A micromechanism is proposed to rationalize the experimental observations.
Date: February 29, 2000
Partner: UNT Libraries Government Documents Department

Length Scale and Aging Effect on the Mechanical Properties of a 63Sn-37Pb Solder Alloy

Description: In this work, uniaxial tensile testing of a 63Sn-37Pb alloy with different specimen sizes and aging conditions had been carried out. Although the stress-strain responses of different specimen sizes and aging conditions differs, the ultimate strength of the specimens with 16 hours, 100 C aging are similar for the sizes tested. The specimens with 25 days, 100 C aging have different stress-strain response with different sizes, and have a lower ultimate strength and higher failure strain compared to 16 hours, 100 C aging specimens.
Date: November 5, 2000
Creator: Lim, T. Jesse & Lu, Wei-Yang
Partner: UNT Libraries Government Documents Department

A Technique for Dynamic Corrosion Testing in Liquid Lead Alloys

Description: An experimental apparatus for the investigation of the flow-assisted dissolution and precipitation (corrosion) of potential fuel cladding and structural materials to be used in liquid lead alloy cooled reactors has been designed. This experimental project is part of a larger research effort between Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology to investigate the suitability of lead, lead-bismuth, and other lead alloys for cooling fast reactors designed to produce low-cost electricity as well as for actinide burning. The INEEL forced convection corrosion cell consists of a small heated vessel with a shroud and gas flow system. The gas flow rates, heat input, and shroud and vessel dimensions have been adjusted so that a controlled coolant flow rate, temperature, and oxygen potential are created within the downcomer located between the shroud and vessel wall. The ATHENA computer code was used to design the experimental apparatus and estimate the fluid conditions. The corrosion cell will test steel that is commercially available in the U. S. to temperatures above 650oC.
Date: April 1, 2001
Creator: Loewen, Eric Paul; Davis, Cliff Bybee & Mac Donald, Philip Elsworth
Partner: UNT Libraries Government Documents Department


Description: Some of the controllable variables have been investigated in casting of lead alloys having 0.06 to 0.09 wt.% Ca. The alloy has been found to respond to solution heat-treatment, room-temperature precipitation hardening, and accelerated hardening at 100 ts C. Tensile strengths to 7000 psi have been obtained. (auth)
Date: February 25, 1960
Creator: Townsend, A.B.
Partner: UNT Libraries Government Documents Department


Description: Available information on the liquid lead-bismuth eutectic is reviewed. A compilation of physical, thermodynamic, and nuclear properties is included. Corrosion, corrosion inhibition, and handling of the eutectic are discussed. (R.J.S.)
Date: July 7, 1961
Creator: Stachura, S.J. & Burnet, G.
Partner: UNT Libraries Government Documents Department

Microstructurally based finite element simulation of solder joint behavior

Description: The most commonly used solder for electrical interconnects in electronic packages is the near eutectic 60Sn-40Pb alloy. This alloy has a number of processing advantages (suitable melting point of 183C and good wetting behavior). However, under conditions of cyclic strain and temperature (thermomechanical fatigue) the microstructure of this alloy undergoes a heterogeneous coarsening and failure process that makes the prediction of solder joint lifetime complex. A finite element simulation methodology to predict solder joint mechanical behavior, that includes microstructural evolution, has been developed. The mechanical constitutive behavior was incorporated into the time dependent internal state variable viscoplastic model through experimental creep tests. The microstructural evolution is incorporated through a series of mathematical relations that describe mass flow in a temperature/strain environment. The model has been found to simulate observed thermomechanical fatigue behavior in solder joints.
Date: January 1, 1996
Creator: Frear, D.R.; Burchett, S.N.; Neilsen, M.K. & Stephens, J.J.
Partner: UNT Libraries Government Documents Department

Computational continuum modeling of solder interconnects

Description: The most commonly used solder for electrical interconnections in electronic packages is the near eutectic 60Sn-40Pb alloy. This alloy has a number of processing advantages (suitable melting point of 183 C and good wetting behavior). However, under conditions of cyclic strain and temperature (thermomechanical fatigue), the microstructure of this alloy undergoes a heterogeneous coarsening and failure process that makes prediction of solder joint lifetime complex. A viscoplastic, microstructure dependent, constitutive model for solder which is currently in development was implemented into a finite element code. With this computational capability, the thermomechanical response of solder interconnects, including microstructural evolution, can be predicted. This capability was applied to predict the thermomechanical response of various leadless chip carrier solder interconnects to determine the effects of variations in geometry and loading. In this paper, the constitutive model will first be briefly discussed. The results of computational studies to determine the effect of geometry and loading variations on leadless chip carrier solder interconnects then will be presented.
Date: March 1, 1997
Creator: Burchett, S.N.; Neilsen, M.K.; Frear, D.R. & Stephens, J.J.
Partner: UNT Libraries Government Documents Department

Damage mechanics characterization on fatigue behavior of a solder joint material

Description: This paper presents the first part of a comprehensive mechanics approach capable of predicting the integrity and reliability of solder joint material under fatigue loading without viscoplastic damage considerations. A separate report will be made to present a comprehensive damage model describing life prediction of the solder material under thermomechanical fatigue loading. The method is based on a theory of damage mechanics which makes possible a macroscopic description of the successive material deterioration caused by the presence of microcracks/voids in engineering materials. A damage mechanics model based on the thermodynamic theory of irreversible processes with internal state variables is proposed and used to provide a unified approach in characterizing the cyclic behavior of a typical solder material. With the introduction of a damage effect tensor, the constitutive equations are derived to enable the formulation of a fatigue damage dissipative potential function and a fatigue damage criterion. The fatigue evolution is subsequently developed based on the hypothesis that the overall damage is induced by the accumulation of fatigue and plastic damage. This damage mechanics approach offers a systematic and versatile means that is effective in modeling the entire process of material failure ranging from damage initiation and propagation leading eventually to macro-crack initiation and growth. As the model takes into account the load history effect and the interaction between plasticity damage and fatigue damage, with the aid of a modified general purpose finite element program, the method can readily be applied to estimate the fatigue life of solder joints under different loading conditions.
Date: August 1, 1998
Creator: Chow, C.L.; Yang, F. & Fang, H.E.
Partner: UNT Libraries Government Documents Department

Microstructural Coarsening during Thermomechanical Fatigue and Annealing of Micro Flip-Chip Solder Joints

Description: Microstructural evolution due to thermal effects was studied in micro solder joints (55 {+-} 5 {micro}m). The composition of the Sn/Pb solder studied was found to be hypereutectic with a tin content of 65--70 wt%.This was determined by Energy Dispersive X-ray analysis and confirmed with quantitative stereology. The quantitative stereological value of the surface-to-volume ratio was used to characterize and compare the coarsening during thermal cycling from 0--160 C to the coarsening during annealing at 160 C. The initial coarsening of the annealed samples was more rapid than the cycled samples, but tapered off as time to the one-half as expected. Because the substrates to which the solder was bonded have different thermal expansion coefficients, the cycled samples experienced a mechanical strain with thermal cycling. The low-strain cycled samples had a 2.8% strain imposed on the solder and failed by 1,000 cycles, despite undergoing less coarsening than the annealed samples. The high-strain cycled samples experienced a 28% strain and failed between 25 and 250 cycles. No failures were observed in the annealed samples. Failure mechanisms and processing issues unique to small, fine pitch joints are also discussed.
Date: December 1, 1998
Creator: Barney, Monica M.
Partner: UNT Libraries Government Documents Department

Constitutive modeling of viscoplastic damage in solder material

Description: This paper presents a constitutive modeling of viscoplastic damage in 63Sn-37Pb solder material taking into account the effects of microstructural change in grain coarsening. Based on the theory of damage mechanics, a two-scalar damage model is developed by introducing the damage variables and the free energy equivalence principle. An inelastic potential function based on the concept of inelastic damage energy release rate is proposed and used to derive an inelastic damage evolution equation. The validation of the model is carried out for the viscoplastic material by predicting monotonic tensile behavior and tensile creep curves at different temperatures. The softening behavior of the material under monotonic tension loading can be characterized with the model. The results demonstrate adequately the validity of the proposed viscoplastic constitutive modeling for the solder material.
Date: April 17, 2000
Partner: UNT Libraries Government Documents Department

Mesoscopic-scale observations of surface alloying, surface phase transitions, domain coarsening, and 3-D island growth: Pb on Cu(100)

Description: Low energy electron microscopy (LEEM) is used to investigate the dynamics of Pb overlayer growth on Cu(100). By following changes in surface morphology during Pb deposition, the amount of Cu transported to the surface as the Pb first alloys into the surface during formation of the c(4x4) phase and subsequently de-alloys during conversion to the c(2x2) phase is measured. The authors find that the added coverage of Cu during alloying is consistent with the proposed model for the c(4x4) alloy phase, but the added coverage during de-alloying is not consistent with the accepted model for the c(2x2) phase. To account for the discrepancy, the authors propose that Cu atoms are incorporated in the c(2x2) structure. Island growth and step advancement during the transition from the c(2x2) to c(5{radical}2x{radical}2)R45{degree} structure agrees with this model. The authors also use the LEEM to identify the order and temperature of the two-dimensional melting phase transitions for the three Pb/Cu(100) surface structures. Phase transitions for the c(5{radical}2x{radical}2)R45{degree} and c(4x4) structures are first-order, but the c(2x2) transition is second order. They determine that rotational domains of the c(5{radical}2x{radical}2)R45{degree} structure coarsen from nanometer- to micron-sized dimensions with relatively mild heating ({approximately}120 C), whereas coarsening of c(4x4) domains requires considerably higher temperatures ({approximately}400 C). In studies of three-dimensional island formation, they find that the islands grow asymmetrically with an orientational dependence that is directly correlated with the domain structure of the underlying c(5{radical}2x{radical}2)R45{degree} phase.
Date: May 23, 2000
Partner: UNT Libraries Government Documents Department