234 Matching Results

Search Results

Advanced search parameters have been applied.

A kinetic-MHD model for studying low frequency multiscale phenomena

Description: A nonlinear kinetic-MHD model for studying low frequency multiscale phenomena has been developed by taking advantage of the single fluid MHD model`s simplicity and by properly accounting for core ion finite Larmor radius (FLR) effects and major kinetic effects of energetic particles. The kinetic-MHD model treats the low energy core plasma by a generalized MHD description and energetic particles kinetically; the coupling between the dynamics of these two components of plasmas is through the plasma pressure. The generalized MHD model for core plasma includes core ion FLR effects which provide a finite parallel electric field, a modified perpendicular velocity from the {bold E} {times} {bold B} drift, and a gyroviscosity tensor, which are neglected in the usual single fluid MHD description. The perturbed core plasma electron and ion densities, velocity and pressure tensor are determined from both the low frequency and high frequency gyro-kinetic equations. From the quasineutrality condition, we obtain the parallel electric field, which arises from the ion gryoradius effects. The kinetic-MHD model is closed by generalized pressure laws for the core and energetic plasmas. When ion gryoradius radius is on the order of the plasma equilibrium scale length, the Vlasov description may be adopted to describe the energetic particle dynamics. From the kinetic-MHD model we derive eigenmode equations for low frequency waves such as shear/kinetic Alfven waves (KAW) and ballooning-mirror modes. The kinetic-MHD model has been successfully applied to study ballooning-mirror instabilities to understand the field-aligned structure and instability threshold of compressional Pc 5 waves in the ring current region. It is also demonstrated that the ion FLR effects in the dispersion relation of KAWs are properly retained; note that these are not properly included in the popularly employed two-fluid equations because the gryoviscosity contribution is usually not retained. 18 refs., 2 figs.
Date: May 1, 1996
Creator: Cheng, C. Z. & Johnson, J. R.
Partner: UNT Libraries Government Documents Department

Self-similar variables and the problem of nonlocal electron heat conductivity

Description: Self-similar solutions of the collisional electron kinetic equation are obtained for the plasmas with one (1D) and three (3D) dimensional plasma parameter inhomogeneities and arbitrary Z{sub eff}. For the plasma parameter profiles characterized by the ratio of the mean free path of thermal electrons with respect to electron-electron collisions, {gamma}{sub T}, to the scale length of electron temperature variation, L, one obtains a criterion for determining the effect that tail particles with motion of the non-diffusive type have on the electron heat conductivity. For these conditions it is shown that the use of a {open_quotes}symmetrized{close_quotes} kinetic equation for the investigation of the strong nonlocal effect of suprathermal electrons on the electron heat conductivity is only possible at sufficiently high Z{sub eff} (Z{sub eff} {ge} (L/{gamma}{sub T}){sup 1/2}). In the case of 3D inhomogeneous plasma (spherical symmetry), the effect of the tail electrons on the heat transport is less pronounced since they are spread across the radius r.
Date: October 1, 1993
Creator: Krasheninnikov, S.I. & Bakunin, O.G.
Partner: UNT Libraries Government Documents Department

Production of a sterile species: Quantum kinetics

Description: Production of a sterile species is studied within an effective model of active-sterile neutrino mixing in a medium in thermal equilibrium. The quantum kinetic equations for the distribution functions and coherences are obtained from two independent methods: the effective action and the quantum master equation. The decoherence time scale for active-sterile oscillations is tau(dec)=2/Gamma(aa), but the evolution of the distribution functions is determined by the two different time scales associated with the damping rates of the quasiparticle modes in the medium: Gamma(1)=Gamma(aa)cos^2theta(m); Gamma(2)=Gamma(aa)sin^2theta(m) where Gamma(aa) is the interaction rate of the active species in the absence of mixing and theta(m) the mixing angle in the medium. These two time scales are widely different away from Mikheyev-Smirnov-Wolfenstein resonances and preclude the kinetic description of active-sterile production in terms of a simple rate equation. We give the complete set of quantum kinetic equations for the active and sterile populations and coherences and discuss in detail the various approximations. A generalization of the active-sterile transition probability in a medium is provided via the quantum master equation. We derive explicitly the usual quantum kinetic equations in terms of the"polarization vector" and show their equivalence to those obtained from the quantum master equation and effective action.
Date: April 23, 2007
Creator: Ho, Chiu Man; Boyanovsky, D. & Ho, C.M.
Partner: UNT Libraries Government Documents Department

Ming Parameter Input: Emma Model Redox Half Reaction Equation Deltag G Corrections for pH

Description: The purpose of this calculation is to provide appropriate input parameters for use in MING V 1.0 (CSCI 300 18 V 1.0). This calculation corrects the Grogan and McKinley (1990) values for {Delta}G so that the data will function in the MING model. The Grogan and McKinley (1990) {Delta}G data are presented for a pH of 12 whereas the MING model requires that the {Delta}G be reported at standard conditions (i.e. pH of 0).
Date: July 23, 1998
Creator: Jolley, D.M.
Partner: UNT Libraries Government Documents Department

Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

Description: This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling efforts.
Date: March 31, 2008
Creator: Blythe, Gary; Currie, John & DeBerry, David
Partner: UNT Libraries Government Documents Department

Reactivity estimation for source-driven systems using first-order perturbation theory.

Description: Applicability of the first-order perturbation (FOP) theory method to reactivity estimation for source-driven systems is examined in this paper. First, the formally exact point kinetics equations have been derived from the space-dependent kinetics equations and the kinetics parameters including the dynamic reactivity have been defined. For the dynamic reactivity, exact and first-order perturbation theory expressions for the reactivity change have been formulated for source-driven systems. It has been also shown that the external source perturbation itself does not change the reactivity if the initial {lambda}-mode adjoint flux is used as the weight function. Using two source-driven benchmark problems, the reactivity change has been estimated with the FOP theory method for various perturbations. By comparing the resulting reactivity changes with the exact dynamic reactivity changes determined from the space-dependent kinetics solutions, it has been shown that the accuracy of the FOP theory method for the accelerator-driven system (ADS) is reasonably good and comparable to that for the critical reactors. The adiabatic assumption has also been shown to be a good approximation for the ADS kinetics analyses.
Date: July 2, 2002
Creator: Kim, Y.; Yang, W. S.; Taiwo, T. A. & Hill, R. N.
Partner: UNT Libraries Government Documents Department

User`s manual for the radioactive decay and accumulation code RADAC

Description: The RADAC computer code calculates radioactive decay and accumulation of decayed products using an algorithm based on the direct use of the Bateman equations and referred to here as the yield factor method. This report explains the yield factor method, gives an overview of the various modules in the RADAC code system, and describes the decay and accumulation code in detail. The RADAC code has capacity for two waste types and can accommodate up to 60 years of annual waste inputs. Decay times as high as 1 million years can be calculated. The user supplies the undecayed composition and radioactivity of the waste placed in storage each year. The code calculates the decayed composition, radioactivity, and thermal power of the accumulated waste at the end of each year and gives the results in terms of grams and curies of individual radionuclides. Calculations can be made for up to 19 waste storage sites in a single run. For each site and each waste type, calculations can be made by 1-year steps up to 60 years, by 10-year steps to 160 years, and by 6 discrete steps to 1 million years. Detailed outputs can be printed for each waste site and each time step by individual radionuclides. Summarized outputs are also available. Excluding data-preparation time, RADAC requires about 2 min to run 19 waste sites with two types of transuranic waste at each site, using a 486 DX computer with a clock speed of 33 MHz. Because RADAC uses a preselected set of decay times and does not make in-reactor calculations, it should not be viewed as a substitute for ORIGEN2. RADAC is intended for use in applications in which accumulations at the decay times provided by the code are sufficient for the user`s purposes.
Date: November 1, 1995
Creator: Salmon, R.; Loghry, S.L. & Ashline, R.C.
Partner: UNT Libraries Government Documents Department

Renormalized dissipation in plasmas with finite collisionality

Description: A nonlinear truncation procedure for Fourier-Hermite expansion of Boltzmann-type plasma equations is presented which eliminates fine velocity scale, taking into account its effect on coarser scales. The truncated system is then transformed back to (x, v) space which results in a renormalized Boltzmann equation. The resulting equation may allow for coarser velocity space resolution in kinetic simulations while reducing to the original Boltzmann equation when fine velocity scales are resolved. To illustrate the procedure, renormalized equations are derived for one dimensional electrostatic plasmas in which collisions are modeled by the Lenard-Bernstein operator.
Date: May 1, 1995
Creator: Parker, S.E. & Carati, D.
Partner: UNT Libraries Government Documents Department

Measurement of isotope separation factors in the palladium-hydrogen system using a thermistor technique

Description: The range of available data on separation factors in the palladium-hydrogen/deuterium system has been extended. A matched pair of glass-coated bead thermistors was used to measure gas phase compositions. The compositions of the input gas--assumed also to be the solid phase composition--were measured independently be mass spectrometry as being within 0.5 mole% of the values used to calibrate the thermistors. This assumption is based on the fact that > 99% of the input gas is absorbed into the solid. Separation factors were measured for 175 K {le} T {le} 389 K and for 0.195 {le} x{sub H} {le} 0.785.
Date: May 1998
Creator: Ortiz, T. M.
Partner: UNT Libraries Government Documents Department

Analysis of classical transport equations for the Tokamak edge plasma

Description: The classical fluid transport equations for a magnet-plasma as given, for example, by Braginskii [1], are complicated in their most general form. Here we obtain the simplest reduced set which contains the essential physics of the tokamak edge problem in slab geometry by systematically applying a parameter ordering and making use of specific symmetries. An important ingredient is a consistent set of boundary conditions as described elsewhere [2]. This model clearly resolves some important issues concerning diamagnetic drifts, high parallel viscosity, and the ambipolarity constraint. The final equations can also serve as a model for understanding the structure of the equations in the presence of anomalous transport terms arising from fluctuations. In fact, Braginskii-like equations are the basis of a number of scrape-off layer (SOL) transport codes [3]. However, all of these codes contain ad hoc radial diffusion terms and often neglect some classical terms, both of which make the self-consistency of the models questionable. Braginskii's equations [1] have been derived from the first principles via the kinetic equations and, thereby, contain such ''built-in'' features as the symmetry of kinetic coefficients, and automatic quasineutrality of a cross-field diffusion in a system with toroidal symmetry such as a tokamak. Our model thus maintains these properties.
Date: September 29, 1997
Creator: Rognlien, T. D., LLNL
Partner: UNT Libraries Government Documents Department

Hydrodynamically driven two-phase flow, a theory of hydrodynamically driven dynamic mix

Description: The author writes the dynamic equations describing the intermixing of two materials starting from the conservation laws. The result is a set of equations for mixing driven by the Rayleigh-Taylor buoyancy force, and amplified by terms which incorporate the Richtmyer-Meshkov and Kelvin-Helmholtz instabilities. Making the assumption of pressure equilibration, the author arrives at equations which predict that mixing will begin, even in the limit of small initial perturbations, and even in a 1-d calculation, when an interface goes Rayleigh-Taylor unstable, unless the drag or material strength forces are sufficiently large to prevent this. The equations given here may be incorporated into 1-d, 2-d, or 3-d codes, for either Lagrangian or Eulerian formulation. They have the nice feature for Lagrangian codes of keeping the zone mass fixed, thus eliminating the need for rezoning.
Date: October 1, 1995
Creator: Binstock, J.
Partner: UNT Libraries Government Documents Department

Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities

Description: In plasma physics, linear instability calculations can be implemented either as initial value calculations or as eigenvalue calculations. Here, comparisons between comprehensive linear gyrokinetic calculations employing the ballooning formalism for high-n (toroidal mode number) toroidal instabilities are described. One code implements an initial value calculation on a grid using a Lorentz collision operator and the other implements an eigenvalue calculation with basis functions using a Krook collision operator. An electrostatic test case with artificial parameters for the toroidal drift mode destabilized by the combined effects of trapped particles and an ion temperature gradient has been carefully analyzed both in the collisionless limit and with varying collisionality. Good agreement is found. Results from applied studies using parameters from the Tokamak Fusion Test Reactor (TFTR) experiment are also compared.
Date: April 1, 1994
Creator: Kotschenreuther, M.; Rewoldt, G. & Tang, W. M.
Partner: UNT Libraries Government Documents Department

Kinetics of helium bubble formation in nuclear materials

Description: The formation and growth of helium bubbles due to self-irradiation in plutonium has been modeled by a discrete kinetic equations for the number densities of bubbles having k atoms. Analysis of these equations shows that the bubble size distribution function can be approximated by a composite of: (1) the solution of partial differential equations describing the continuum limit of the theory but corrected to take into account the effects of discreteness, and (2) a local expansion about the advancing leading edge of the distribution function in size space. Both approximations contribute to the memory term in a close integrodifferential equation for the monomer concentration of single helium atoms. The present theory is compared to the numerical solution of the full kinetic model and to previous approximation of Schaldach and Wolfer involving a truncated system of moment equations.
Date: October 13, 2005
Creator: Bonilla, L L; Carpio, A; Neu, J C & Wolfer, W G
Partner: UNT Libraries Government Documents Department

Collaborating for Multi-Scale Chemical Science

Description: Advanced model reduction methods were developed and integrated into the CMCS multiscale chemical science simulation software. The new technologies were used to simulate HCCI engines and burner flames with exceptional fidelity.
Date: July 14, 2006
Creator: Green, William H.
Partner: UNT Libraries Government Documents Department

Computer applications in controlled thermonuclear research

Description: This report surveys those areas of plasma physics and controlled thermonuclear research in which computation has made significant contributions. Both fluid and particle models are considered, and applications to specific confinement experiments and plasma theory are discussed. (auth)
Date: August 15, 1973
Creator: Killeen, J.
Partner: UNT Libraries Government Documents Department

Influence of radial electric field on Alfven-type instabilities

Description: The influence of the large scale radial electric field, E{sub r}{sup (0)} on the frequency of shear-Alfven-type instability is analyzed. A frozen-in-flux constraint and the moderate-{beta} ion gyrokinetic equation are used in the derivation. The analysis indicates that the frequency predicted by a theory with E{sub r}{sup (0)} effect should be Doppler-shifted by k {center_dot} V{sub E} for comparison to the experimentally observed frequency. A specific example of the practical relevance of the result is given regarding possible identification of the edge-localized-mode-associated magnetic activity recently observed in PBX-M tokamak experiment.
Date: March 1, 1994
Creator: Hahm, T.S. & Tang, W.M.
Partner: UNT Libraries Government Documents Department


Description: A new approach to solving the kinetic equation for the beam distribution function, (very useful from the practical point of view), is discussed, in which the authors also obtain a complement to the Skrinsky's condition for the self-focused bunched beam. This problem belongs to the theory of nonlinear systems in which both regular and chaotic motion is possible. The kinetic approach, based on Vlasov-Poisson equations, are used to investigate the focusing and acceleration of bunched beam. Special attention is given to the studies of stability in a bunched beam by means of the two norm, which may be used to describe t!he motion of high-energy particles.
Date: April 7, 2000
Partner: UNT Libraries Government Documents Department