54 Matching Results

Search Results

Advanced search parameters have been applied.

KEROGEN OIL VALUE ENHANCEMENT RESEARCH

Description: Three general categories of products from the Estonia Kukersite kerogen oil were defined: pure compounds, broad range concentrates, and sweet refinery feedstock. Product development and market research center on these three categories. Further attempts were made to identify and test chemical approaches for producing lower alkyl resorcinols (what the market requires) from higher alkyl resorcinols. The approaches and process conditions tested have not yet produced satisfactory results. Progress was made to interest industry in the phenolic products producible. A sample of oil from the Galoter retort was received from Estonia and characterization of this sample was initiated. The sample was batch extracted and results of yields and selectivity are reported.
Date: May 22, 2002
Creator: James W. Bunger, Ph.D.; Christopher P. Russell, Ph.D. & Donald E. Cogswell, M.S.
Partner: UNT Libraries Government Documents Department

Advanced Chemistry Basins Model

Description: The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.
Date: November 10, 2002
Creator: Goddard, William; Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter & Tang, Yongchun
Partner: UNT Libraries Government Documents Department

Seismic and Rockphysics Diagnostics of Multiscale Reservoir Textures

Description: As part of our study on ''Relationships between seismic properties and rock microstructure'', we have continued our work on analyzing shale textures from scanning acoustic microscope images. Our analysis is now extended to over 280 images of shales, giving us better statistics. The shales cover a range of depths and maturity. We estimate different statistical measures for characterizing heterogeneity and textures from scanning acoustic microscope (SAM) images of shale microstructures. Characterizing and understanding the microgeometry, their textures, scales, and textural anisotropy is important for better understanding the role of microgeometry on effective elastic properties. We analyzed SAM images from Bakken shale, Bazhenov shale, and Woodford shale. We observed quantifiable and consistent patterns linking texture, shale maturity, and elastic P-wave impedance. The textural heterogeneity and P-wave impedance increase with increasing maturity (decreasing kerogen content), while there is a general decrease in textural anisotropy with maturity. We also found a reasonably good match between elastic impedance estimated from SAM images and impedance computed from ultrasonic measurements.
Date: May 1, 2004
Creator: Mavko, Gary
Partner: UNT Libraries Government Documents Department

Seismic and Rockphysics Diagnostics of Multiscale Reservoir Textures

Description: As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) Kerogen-rich shales using Scanning Acoustic Microscopy and ultrasonic wave propagation. We find that an increase in elastic modulus with increasing kerogen maturity can be directly related to the microstructural acoustic impedance changes. A positive relation is established between microstructural changes and velocity variations as functions of kerogen maturity. (2) Elastic properties of clay minerals using Atomic Force Acoustic Microscopy and Scanning Acoustic Microscopy. We show the effect of clay minerals in contact zones as load-bearing constituents of rocks (3) Elastic properties of unconsolidated sediments in an effort to quantify attributes for detection of overpressures from seismic and for effects of stress-induced velocity anisotropy in sediments (4) We have initiated efforts for velocity upscaling to quantify long-wavelength and short-wavelength velocity behavior and the scale-dependent dispersion caused by sediment variability in different depositional environments.
Date: November 1, 2002
Creator: Mavko, Gary
Partner: UNT Libraries Government Documents Department

Shale oil value enhancement research. Quarterly report, June 1 - August 31, 1996

Description: The overall objective is to develop a new technology for manufacturing valuable marketable products from shale oil. The quarter`s efforts were concentrated on (a) THDA and reaction of alkylpyridines at elevated conditions, (b) compound type analysis of kerogen oil and its derived products, (b) thermal hydrodealkylation of the > 290{degrees}C polar fraction, (c) secondary reactions of pyridinic type compounds to form marketable products, and (d) preparation of presentation to the Dawnbreaker Commercial Assistance Program. Excellent progress is being made in all cases. Our market analysis and industrial feedback indicate that the low molecular weight pyridines are the main market driving force. We are concentrating our effort toward increasing the yield of ``light`` pyridines before the end of Phase II(a). Our current laboratory set-up can only produce analytical quantity of samples, which is not sufficient for marketing purpose. However, the completion of a secondary flow THDA unit for a pilot-scale production depends on the availability of the Phase-II(b) and Phase-III funding.
Date: December 31, 1996
Creator: Bunter, J.W.; Russell, C.P.; Tsai, J.C.H.; Cogswell, D.E.; Mihamou, H. & Wright, A.D.
Partner: UNT Libraries Government Documents Department

SEISMIC AND ROCKPHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

Description: As part of our study on ''Relationships between seismic properties and rock microstructure'', we have continued our work on analyzing microstructural constraints on seismic signatures. Our analysis is now extended to over 280 images of shales, giving us better statistics. The shales cover a range of depths and maturity. We estimate different statistical measures for characterizing heterogeneity and textures from scanning acoustic microscope (SAM) images of shale microstructures. Characterizing and understanding the microgeometry, their textures, scales, and textural anisotropy is important for better understanding the role of microgeometry on effective elastic properties. We analyzed SAM images from Bakken shale, Bazhenov shale, and Woodford shale. We observed quantifiable and consistent patterns linking texture, shale maturity, and elastic P-wave impedance. The textural heterogeneity and P-wave impedance increase with increasing maturity (decreasing kerogen content), while there is a general decrease in textural anisotropy with maturity. We also found a reasonably good match between elastic impedance estimated from SAM images and impedance computed from ultrasonic measurements.
Date: November 1, 2004
Creator: Mavko, Gary
Partner: UNT Libraries Government Documents Department

KEROGEN OIL VALUE ENHANCEMENT RESEARCH

Description: Task 13 (a) was approved on December 21, 2001. Minimal work was performed for the quarter during the approval process. Laboratory and equipment facilities have been maintained in anticipation of the work to be done. The PI communicated with DOE and Estonia researchers during this period, providing advice and direction for the startup of the Estonia research, and preparing a Draft Teaming Agreement. The PI participated in an industrial liaison meeting with DOE personnel. This meeting is expected to lead to formal cooperation between industry and government.
Date: January 11, 2002
Creator: Bunger, James W.; Russell, Christopher P. & Cogswell, Donald E.
Partner: UNT Libraries Government Documents Department

Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

Description: Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.
Date: March 30, 2010
Creator: Schimmelmann, Arndt & Mastalerz, Maria
Partner: UNT Libraries Government Documents Department

Shale Oil Value Enhancement Research

Description: Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.
Date: November 30, 2006
Creator: Bunger, James W.
Partner: UNT Libraries Government Documents Department

Investigation and development of alternative methods for shale oil processing and analysis. Final technical report, October 1979--April 1983

Description: Oil shale, a carbonaceous rock which occurs abundantly in the earth`s crust, has been investigated for many years as an alternate source of fuel oil. The insoluble organic matter contained in such shales is termed {open_quotes}Kerogen{close_quotes} from the Greek meaning oil or oil forming. The kerogen in oil shale breaks down into oil-like products when subjected to conditions simulating destructive distillation. These products have been the subject of extensive investigations by several researchers and many of the constituents of shale oil have been identified. (1) Forsman (2) estimates that the kerogen content of the earth is roughly 3 {times} 10{sup 15} tons as compared to total coal reserves of about 5 {times} 10{sup 12}. Although the current cost per barrel estimate for commercial production of shale oil is higher than that of fossil oil, as our oil reserves continue to dwindle, shale oil technology will become more and more important. When oil shale is heated, kerogen is said to undergo chemical transformation to usable oil in two steps (3): Kerogen (in oil shale) 300-500{degrees}C bitumen. Crude shale oil and other products. The crude shale oil so obtained differs from fossil oil in that: (1) kerogen is thought to have been produced from the aging of plant matter over many years; (2) shale oil has a higher nitrogen content than fossil oil; (3) non-hydrocarbons are present to a much greater extent in shale oil; and (4) the hydrocarbons in shale oil are much more unsaturated than those in fossil oil (petroleum).
Date: June 1, 1998
Creator: Evans, R.A.
Partner: UNT Libraries Government Documents Department

KINETICS: A computer program to analyze chemical reaction data. Revision 2

Description: KINETICS (Version 3.2) is a copyrighted, user-friendly kinetics analysis computer program designed for reactions such-as kerogen or polymer decomposition. It can fit rate parameters to chemical reaction data (rate or cumulative reacted) measured at a series of constant temperatures, constant heating rates, or arbitrary thermal histories. The program uses two models with conversion-dependent Azrhenius parameters and two models with activation energy distributions. The discrete distribution model fits an average frequency factor and relative fractions and activation energies for up to 25 parallel, fast-order reactions. The Gaussian distribution model fits a frequency factor, activation energy, Gaussian distribution parameter, and reaction order for up to 3 parallel reactions. For both distribution models, if the experiments are at a series of constant heating rates, the program uses a very fast approximate fitting procedure to determine possible initial parameter-estimates for the subsequent nonlinear regression analysis. This increases the probability that the regression analysis will properly. converge with a minimum of computer time. Once convergence is reached by the discrete model, the parameter space is further systematically searched to achieve global convergence. With the Gaussian model, the calculated rates or integrals can be convoluted with an experimental tracer signal during the nonlinear regression to account for dispersion effects often found in real chemical reaction data. KINETICS can also be used in an application mode to calculate reaction rates and integrals for previously determined Gaussian or discrete, parameters, using an arbitrary thermal history. Four additional models have been incorporated for the kinetics analysis of polymers and other materials, including some kerogens, which have a reaction-rate profile that is narrower than that for a single first-order reaction.
Date: September 1, 1994
Creator: Braun, R.L. & Burnham, A.K.
Partner: UNT Libraries Government Documents Department

Advanced Chemistry Basins Model

Description: The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.
Date: February 13, 2003
Creator: Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter & Tang, Yongchun
Partner: UNT Libraries Government Documents Department

Transformations in organic sulfur speciation during maturation of Monterey shale: Constraints from laboratory experiments

Description: A series of hydrous pyrolysis experiments were conducted at temperatures ranging from 125 to 360C at 350 bars pressure to examine variations in sulfur speciation during thermal maturation of Monterey shale. The total sediment, kerogen and bitumen from each experiment in addition to unheated representatives were analyzed via x-ray absorption spectroscopy, pyrolysis-gas chromatography, {sup 30}NMR spectrometry, elemental analysis, thin-layer chromatography and reflected light microscopy. Based on these measurements, it was possible to recognize three distinct temperature regimes, within which the type and amount of sulfur in the analyzed fractions underwent transformations: (1) between 150 and 225C significant proportion of kerogen-bound sulfur is lost probably due to the collapse of polysulfide bridges; (2) between 225 and 275C, cleavage of -S-S- and -S-C- linkages within the kerogen is believed to occur, resulting in substantial production of polar sulfur-rich bitumen; (3) above 275C total bitumen yields as well as the proportion of bitumen sulfur decrease, while C-C bond scission leads to increased yields of saturated and aromatic hydrocarbons. The results from this study clearly and quantitatively establish a link between organically-bound sulfur, and more specifically, organic polysulfides, and the low-temperature evolution of soluble petroleum-like products (bitumen) from sulfur-rich source rocks.
Date: April 1995
Creator: Nelson, B. C.; Eglinton, T. I.; Seewald, J. S.; Vairavamurthy, M. A. & Miknis, F. P.
Partner: UNT Libraries Government Documents Department

THE ADVANCED CHEMISTRY BASINS PROJECT

Description: In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three ...
Date: April 5, 2004
Creator: Goddard, William; Meulbroek, Peter; Tang, Yongchun & III, Lawrence Cathles
Partner: UNT Libraries Government Documents Department

Advanced Chemistry Basins Model

Description: The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.
Date: February 13, 2003
Creator: Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter & Tang, Yongchun
Partner: UNT Libraries Government Documents Department

Advanced Chemistry Basins Model

Description: The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.
Date: February 13, 2003
Creator: Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter & Tang, Yongchun
Partner: UNT Libraries Government Documents Department

Advanced Chemistry Basins Model

Description: The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.
Date: February 13, 2003
Creator: Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter & Tang, Yongchun
Partner: UNT Libraries Government Documents Department

Temperature effects on chemical structure and motion in coal. Final report

Description: The objective of this project was to apply recently developed, state-of-the-art nuclear magnetic resonance (NMR) techniques to examine in situ changes in the chemical structure and molecular/macromolecular motion in coal as the temperature is increased above room temperature. Although alterations in the chemical structure of coal have been studied previously by {sup 13}C NMR, using quenched samples, the goal of this project was to examine these chemical structural changes, and changes in molecular/macromolecular mobility that may precede or accompany the chemical changes, at elevated temperatures, using modern {sup 13}C and {sup 1}H NMR techniques, especially {sup 1}H dipolar-dephasing techniques and related experiments pioneered in the laboratory for examining pyridine-saturated coals. This project consisted of the following four primary segments and related efforts on matters relevant to the first four tasks. (1) {sup 1}H NMR characterization of coal structure and mobility as a function of temperature variation over a temperature range (30--240 C) for which substantial chemical transformations were not anticipated. (2) {sup 1}H NMR characterization of coal structure, mobility and conversion as a function of temperature variation over a temperature range (240--500 C) for which chemical transformations of coal are known to occur. (3) {sup 13}C NMR investigation of coal structure/mobility as a function of temperature over a temperature range (30--240 C) for which substantial chemical transformations were not anticipated. (4) {sup 13}C NMR investigation of coal structure, dynamics and conversion as a function of temperature variation over a range (240--500 C) for which chemical transformations of coal are known to occur. (5) Related matters relevant to the first four tasks: (a) {sup 1}H CRAMPS NMR characterization of oil shales and their kerogen concentrates; and (b) improved quantitation in {sup 13}C MAS characterization of coals.
Date: September 30, 1996
Creator: Maciel, G.E.
Partner: UNT Libraries Government Documents Department

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

Description: Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.
Date: February 10, 2003
Creator: Nuttall, Brandon C.
Partner: UNT Libraries Government Documents Department

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

Description: Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.
Date: February 11, 2003
Creator: Nuttall, Brandon C.
Partner: UNT Libraries Government Documents Department

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

Description: Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.
Date: January 1, 2005
Creator: Nuttall, Brandon C.
Partner: UNT Libraries Government Documents Department

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

Description: Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.
Date: January 28, 2005
Creator: Nuttall, Brandon C.
Partner: UNT Libraries Government Documents Department

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

Description: Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.
Date: April 26, 2005
Creator: Nuttall, Brandon C.
Partner: UNT Libraries Government Documents Department

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

Description: Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.
Date: August 1, 2004
Creator: Nuttall, Brandon C.
Partner: UNT Libraries Government Documents Department