104 Matching Results

Search Results

Advanced search parameters have been applied.

K-shell ionization by low-velocity ions

Description: Article discussing K-shell ionization by low-velocity ions. K-shell x-ray-production measurements are reported for protons, deuterons, and alpha particles incident on thin foils of copper, niobium, silver, and antimony.
Date: August 1981
Creator: Rice, R.; McDaniel, Floyd Del. (Floyd Delbert), 1942-; Basbas, George & Duggan, Jerome L.
Partner: UNT College of Arts and Sciences

Electron-Ion Time-of-Flight Coincidence Measurements of K-K Electron Capture, Cross Sections for Nitrogen, Methane, Ethylene, Ethane, Carbon Dioxide and Argon (L-K) Targets

Description: Protons with energies ranging from 0.4 to 2.0 MeV were used to measure K-shell vacancy production cross sections (oVK) for N_2, CH_4, C_2H_4, C_2H_6, and CO_2 gas targets under single collision conditions. An electron-ion time-of-flight coincidence technique was used to determind the ration of the K-K electron capture cross section, OECK, to the K-vacancy production cross section, oVK. These ratios were then combined with the measured values of oVK to extract the K-K electron capture cross sections. Measurements were also made for protons of the same energy range but with regard to L-shell vacancy production and L-K electron capture for Ar targets. In addition, K-K electron capture cross sections were measured for 1.0 to 2.0 Mev 42He^_ ions on CH_4.
Date: May 1986
Creator: Toten, Arvel D.
Partner: UNT Libraries

Low-Velocity K-Shell Ionization Cross Sections for Protons, Deuterons and Alpha Particles Bombarding Thin Metal Targets

Description: The purpose of this work was to examine the effect of the use the assumption κω2K/ΕCM «1 in calculating K-shell ionization cross sections in the plane wave Born approximation (PWBA) where κω2K is the observed binding energy of the K-shell and ECM is the energy of the incident particle in the center of mass system. Avoiding this assumption produces a threshold for ionization at Ecm = κω2K. Calculations employing the assumption, which leads to the use of approximate limits of integration, do not go to zero for even the .Lowest values of the incident energy.
Date: May 1981
Creator: Rice, Roger Karl
Partner: UNT Libraries

Hot surface ionic line emission and cold K-inner shell emission from petawatt-laser irradiated Cu foil targets

Description: A hot, T{sub e} {approx} 2- to 3-keV surface plasma was observed in the interaction of a 0.7-ps petawatt laser beam with solid copper-foil targets at intensities >10{sup 20} W/cm{sup 2}. Copper K-shell spectra were measured in the range of 8 to 9 keV using a single-photon-counting x-ray CCD camera. In addition to K{sub {alpha}} and K{sub {beta}} inner-shell lines, the emission contained the Cu He{sub {alpha}} and Ly{sub {alpha}} lines, allowing the temperature to be inferred. These lines have not been observed previously with ultrafast laser pulses. For intensities less than 3 x 10{sup 18} W/cm{sup 2}, only the K{sub {alpha}} and K{sub {beta}} inner-shell emissions are detected. Measurements of the absolute K{sub {alpha}} yield as a function of the laser intensity are in agreement with a model that includes refluxing and confinement of the suprathermal electrons in the target volume.
Date: December 13, 2005
Creator: Theobald, W; Akli, K; Clarke, R; Delettrez, J A; Freeman, R R; Glenzer, S et al.
Partner: UNT Libraries Government Documents Department

Laser heating of solid matter by light pressure-driven shocks

Description: Heating by irradiation of a solid surface in vacuum with 5 x 10{sup 20} W cm{sup -2}, 0.8 ps, 1.05 {micro}m wavelength laser light is studied by x-ray spectroscopy of the K-shell emission from thin layers of Ni, Mo and V. A surface layer is heated to {approx} 5 keV with an axial temperature gradient of 0.6 {micro}m scale length. Images of Ni Ly{sub {alpha}} show the hot region has a {approx} 25 {micro}m diameter, much smaller than {approx} 70 {micro}m region of K{sub {alpha}} emission. 2D particle-in-cell (PIC) simulations suggest that the surface heating is due to a light pressure driven shock.
Date: May 4, 2007
Creator: Akli, K; Hansen, S B; Kemp, A J; Freeman, R R; Beg, F N; Clark, D et al.
Partner: UNT Libraries Government Documents Department

High-Resolution Spectroscopy of K-shell Praseodymium with a High-Energy Calorimeter

Description: We present a measurement of the K-shell spectrum of He-like through Be-like praseodymium ions trapped in the Livermore SuperEBIT electron beam ion trap using a bismuth absorber pixel on the XRS/EBIT microcalorimeter. This measurement is the first of its kind where the n=2 to n=1 transitions of the various charge states are spectroscopically resolved. The measured transition energies are compared with theoretical calculations from several atomic codes.
Date: June 5, 2007
Creator: Thorn, D B; Brown, G V; Clementson, J T; Chen, H; Chen, M H; Beiersdorfer, P et al.
Partner: UNT Libraries Government Documents Department

Polymerization, shock cooling and ionization of liquid nitrogen

Description: The trajectory of thermodynamic states passed through by the nitrogen Hugoniot starting from the liquid and up to 10{sup 6} GPa has been studied. An earlier report of cooling in the doubly shocked liquid, near 50 to 100 GPa and 7500 K, is revisited in light of the recent discovery of solid polymeric nitrogen. It is found that cooling occurs when the doubly shocked liquid is driven into a volume near the molecular to polymer transition and raising the possibility of a liquid-liquid phase transition (LLPT). By increasing the shock pressure and temperature by an order of magnitude, theoretical calculations predict thermal ionization of the L shell drives the compression maxima to 5-6 fold compression at 10 Mbar (T {approx} 3.5 10{sup 5} K) and at 400 Mbar (T {approx} 2.3 10{sup 6} K) from K shell ionization. Near a pressure of 10{sup 6} GPa the K shell ionizes completely and the Hugoniot approaches the classical ideal gas compression fourfold limit.
Date: July 21, 2005
Creator: Ross, M & Rogers, F
Partner: UNT Libraries Government Documents Department

Projectile charge-state dependence of K-shell ionization by silicon ions: A comparison of Coulomb ionization theories for direct ionization and electron capture with x-ray production data

Description: Article discussing projectile charge-state dependence of K-shell ionization by silicon ions and a comparison of Coulomb ionization theories for direct ionization and electron capture with x-ray production data.
Date: October 1977
Creator: McDaniel, Floyd Del. (Floyd Delbert), 1942-; Duggan, Jerome L.; Basbas, George; Miller, P. D. & Lapicki, Gregory
Partner: UNT College of Arts and Sciences

High-Resolution Measurements of the K-Shell Spectral Lines of Hydrogenlike and Heliumlike Xenon

Description: With the implementation of a transmission-type curved crystal spectrometer at the Livermore high-energy electron beam ion trap (SuperEBIT) the window on sub-eV level measurements of the ground-state quantum electrodynamics and the two-electron quantum electrodynamics of high-Z ions has been opened. High-resolution spectroscopic measurements of the K{alpha} spectra of hydrogenlike Xe{sup 53+} and heliumlike Xe{sup 52+} are presented. The electron-impact excitation cross sections have been determined relative to the radiative recombination cross sections. The electron-impact energy was 112 keV which is about 3.7 times the excitation threshold for the n = 2 {yields} 1 transitions. Although the relative uncertainties of the measured electron-impact excitation cross sections range from about 20% to 50%, significant disagreement between the measured and calculated cross section values has been found for one of the heliumlike xenon lines. Overall, the comparison between experiment and theory shows that already for xenon (Z=54) the Breit interaction plays a significant part in the collisional excitation process. The measured cross sections for the hydrogenlike transitions are in good agreement with theoretical predictions. Additionally, the Xe{sup 53+} Ly-{alpha}{sub 1} transition energy has been measured utilizing the K{alpha} emission of neutral cesium and barium for calibration. Surprisingly, the experimental result, (31279.2 {+-} 1.5) eV, disagrees with the widely accepted theoretically predicted value of (31283.77 {+-} 0.09) eV. However, this disagreement does not (yet) call for any correction in respect to the theoretical values for the transition energies of the hydrogenlike isoelectronic sequence. It rather emphasizes the need for a reevaluation of the commonly used x-ray wavelengths table for atomic inner-shell transitions, in particular, for the cesium K{alpha} lines.
Date: September 13, 1999
Creator: Windman, K.; Beiersdorfer, P.; Brown, G.V.; Crespo, J.R.; Osterheld, A.L.; Reed, K.J. et al.
Partner: UNT Libraries Government Documents Department

Fluorine k-shell x-ray cross section measurements for ⁷Li, ¹⁰B, ¹²C, ¹⁴N, and ¹⁶O ions on ultra-clean, ultra-thin YF₃ solid target foils

Description: In this study, procedures were developedto produce ultra-clean, ultra-thin target foils and to remove x-ray interference from electron bremsstrahlung and low energy K-shell x-rays from contaminant elements.
Date: August 1991
Creator: Marble, Daniel Keith
Partner: UNT Libraries

Hot Electron Diagnostic in a Solid Laser Target by K-Shell Lines Measurement from Ultra-Intense Laser-Plasma Interactions R=1.06 (micron)m, 3x10 W/cm -2(less than or equal to) 500 J

Description: Characterization of hot electron production (a conversion efficiency from laser energy into electrons) from ultra intense laser-solid target interaction by observing molybdenum (Mo) K{beta} as well as K{alpha} emissions from a buried fluorescence tracer layer in the targets has been done. The experiments used 1.06 {micro}m laser light with an intensity of from 2 x 10{sup 18} up to 3 x 10{sup 20} W cm{sup -2} (20-0.5 ps pulse width) and an on target laser energy of 280-500 J. The conversion efficiency from the laser energy into the energy, carried by hot electrons, has been estimated to be {approx}50% for the 0.5 ps shots at an on-target laser intensity of 3 x 10{sup 20} W cm{sup -2}, which increased from {approx}30% at 1 x 10{sup 19} W cm{sup -2} 5 ps shots and {approx} 12% at 2 x 10{sup 18} W cm{sup -2} 20 ps shots.
Date: July 27, 2000
Creator: Yasuike, K.; Wharton, K.B.; Key, M.; Hatchett, S. & Snavely, R.
Partner: UNT Libraries Government Documents Department

Double K-vacancy production by x-ray photoionization.

Description: We have studied double K-shell photoionization of Ne and Mo (Z = 10 and 42) at the Advanced Photon Source. Double K-vacancy production in Ne was observed by recording the KK-KLL Auger hypersatellite spectrum. Comparison is made with calculations using the multiconfiguration Dirac-Fock method. For Mo, double K-vacancy production was observed by recording the K{alpha}, {beta} fluorescence hypersatellite and satellite x rays in coincidence. From the intensities of the Auger or x-ray hypersatellites relative to diagram lines, the probabilities for double K-vacancy production relative to single K-vacancies were determined. These results, along with reported measurements on other atoms, are compared with Z-scaling calculations of the high-energy limits of the double-to-single K-shell photoionization ratio.
Date: August 13, 2002
Creator: Southworth, S. H.; Dunford, R. W.; Kanter, E. P.; Krassig, B.; Young, L.; Armen, G. B. et al.
Partner: UNT Libraries Government Documents Department