55 Matching Results

Search Results

Advanced search parameters have been applied.

Final report on characterizing the dynamics of spatio-temporal data

Description: One principal goal of the grant was to model and analyze the dynamics of spatially extended chaotic systems. One of the principal tools used in the analysis was KLTOOL, a computer package developed by the principal investigators for Karhunen-Loeve analysis. The package was used to analyze video data from a laboratory experiment on cellular flames. A second goal of the project was to analyze complex time series whose underlying dynamics may be low dimensionally chaotic. Particular emphasis was placed on systems of possible relevance to energy production and distribution. The work attempted to characterize low-dimensional aspects of the dynamics of a fluidized bed, in particular, a transition from periodic to irregular behavior. Finally, collaborators worked on aspects of targeting in chaotic dynamical systems. This work showed that it is possible to switch a moderately high-dimensional chaotic process rapidly between prespecified periodic saddle orbits embedding within the attractor. Additional work extended previously-developed algorithms for the highly accurate computation of stable manifolds of periodic saddle orbits, which is essential to the successful application of targeting algorithms.
Date: September 1, 1998
Creator: Kostelich, E.J. & Armbruster, H.D.
Partner: UNT Libraries Government Documents Department

Assurances associated with Monte Carlo code results

Description: All Monte Carlo computer codes have an uncertainty associated with the final result. This uncertainty (or standard deviation) is due to the sampling method inherent within the Monte Carlo technique. The basic assumptions required for the final result and uncertainty to be valid are (1) the random numbers used are truly random, (2) there is no correlation between histories, (3) the number of histories used is sufficient to represent the problem, and (4) the entire problem is adequately sampled. The first two assumptions are an integral are strongly dependent on how a problem is set up and the number of histories processed. These are items the user has direct control over. This paper examines six aspects of the KENO Monte Carlo code that affect the above-mentioned four assumptions.
Date: June 1, 1995
Creator: Hollenbach, D.F. & Petrie, L.M.
Partner: UNT Libraries Government Documents Department

Hydrogen as a zero-emission, high-efficiency fuel: Uniqueness, experiments and simulations

Description: The planned use of hydrogen as the energy carrier of the future introduces new challenges and opportunities, especially to the engine design community. Hydrogen is a bio-friendly fuel that can be produced from renewable resources and has no carbon dioxide combustion products; and in a properly designed ICE, almost zero NO{sub x} and hydrocarbon emissions can be achieved. Because of the unique properties of hydrogen combustion - in particular the highly wrinkled nature of the laminar flame front due to the preferential diffusion instability - modeling approaches for hydrocarbon gaseous fuels are not generally applicable to hydrogen combustion. This paper reports on the current progress to develop an engine design capability based on the KIVA family of codes for hydrogen-fueled, spark-ignited engines in support of the National Hydrogen Program. A turbulent combustion model, based on a modified eddy-turnover model in conjunction with an intake flow valve model, is found to describe well the efficiency and NO{sub x} emissions for an experimental engine over a wide range of ignition timings. The NO{sub x} emissions of this engine satisfy the Equivalent Zero Vehicle (EZEV) standard established by the California Resource Board.
Date: November 1, 1997
Creator: Johnson, N.L.
Partner: UNT Libraries Government Documents Department

User documentation for KINSOL, a nonlinear solver for sequential and parallel computers

Description: KINSOL is a general purpose nonlinear system solver callable from either C or Fortran programs It is based on NKSOL [3], but is written in ANSI-standard C rather than Fortran77 Its most notable feature is that it uses Krylov Inexact Newton techniques in the system`s approximate solution, thus sharing significant modules previously written within CASC at LLNL to support CVODE[6, 7]/PVODE[9, 5] It also requires almost no matrix storage for solving the Newton equations as compared to direct methods The name KINSOL is derived from those techniques Krylov Inexact Newton SOLver The package was arranged so that selecting one of two forms of a single module in the compilation process will allow the entire package to be created in either sequential (serial) or parallel form The parallel version of KINSOL uses MPI (Message-Passing Interface) [8] and an appropriately revised version of the vector module NVECTOR, as mentioned above, to achieve parallelism and portability KINSOL in parallel form is intended for the SPMD (Single Program Multiple Data) model with distributed memory, in which all vectors are identically distributed across processors In particular, the vector module NVECTOR is designed to help the user assign a contiguous segment of a given vector to each of the processors for parallel computation Several primitives were added to NVECTOR as originally written for PVODE to implement KINSOL KINSOL has been run on a Cray-T3D, an eight- processor DEC ALPHA and a cluster of workstations It is currently being used in a simulation of tokamak edge plasmas and in groundwater two-phase flow studies at LLNL The remainder of this paper is organized as follows Section 2 sets the mathematical notation and summarizes the basic methods Section 3 summarizes the organization of the KINSOL solver, while Section 4 summarizes its usage Section 5 describes a preconditioner module, Section ...
Date: July 1, 1998
Creator: Taylor, A. G., LLNL
Partner: UNT Libraries Government Documents Department

PVODE and KINSOL: parallel software for differential and nonlinear systems

Description: In this project, parallel general-purpose software for two classes of mathematical problems has been developed. PVODE is a portable solver for ordinary differential equation systems, based on robustmathematical algorithms, and targeted at large systems on parallel machines. It is the parallel extension of the earlier sequential solver CVODE. A related solver called KINSOL has been developed for systems of nonlinear algebraic equations. KINSOL was first developed as a sequential solver, on a design that permitted extending it to a parallel version with fairly minimal additions. Both PVODE and KINSOL are being used within a parallel version of the tokamak edge plasma model UEDGE. KINSOL is also being applied in the ParFlow groundwater flow model to solve a nonlinear pressure equation.
Date: February 1, 1998
Creator: Hindmarsh, A.C. & Taylor, A.G.
Partner: UNT Libraries Government Documents Department

A parallel implementation of kriging with a trend

Description: This paper describes the parallelization of the GSLIB ktb3dm code. The code is parallelized using the message passing paradigm, Parallel Virtual Machine (PVM), under a Multiple Instructions, Multiple Data (MIMD) architecture. The code performance is analyzed using different grid sizes of 5x5x1, 50x50x1, 100x100x1 and 500x500x1 with 1, 2, 4, 8 and in some cases 16 processors on the Cray T3D supercomputer. The parallelization effort focused on the main kriging do loop. The results confirm that there is a substantial benefit to be derived in terms of CPU time savings (or execution speed) by using the parallel version of the code, especially when considering larger grids. Additionally, speed-up and scalability analyses show that actual speed-up is close to theoretical, while the code scales appropriately within the 1 to 16 processor range tested. The kriging of a quarter-million grid cell system fell from over 9 CPU minutes on one Cray T3D processor to about 1.25 CPU minutes on 16 processors on the same machine.
Date: November 1, 1997
Creator: Gajraj, A.; Joubert, W. & Jones, J.
Partner: UNT Libraries Government Documents Department

KIVA-3V: A block-structured KIVA program for engines with vertical or canted valves

Description: This report describes an extended version of KIVA-3, known as KIVA-3V, that can model any number of vertical or canted valves in the cylinder head of an internal combustion (IC) engine. The valves are treated as solid objects that move through the mesh using the familiar snapper technique used for piston motion in KIVA-3. Because the valve motion is modeled exactly, and the valve shapes are as exact as the grid resolution will allow, the accuracy of the valve model is commensurate with that of the rest of the program. Other new features in KIVA-3V include a particle-based liquid wall film model, a new sorting subroutine that is linear in the number of nodes and preserves the original storage sequence, a mixing-controlled turbulent combustion model, and an optional RNG {kappa}-{epsilon} turbulence model. All features and capabilities of the original KIVA-3 have been retained. The grid generator, K3PREP, has been expanded to support the generation of grids with valves, along with the shaping of valve ports and runners. Graphics output options have also been expanded. The report discusses the new features, and includes four examples of grids with vertical and canted valves that are representative of IC engines in use today.
Date: July 1, 1997
Creator: Amsden, A.A.
Partner: UNT Libraries Government Documents Department

KENO3D Visualization Tool for KENO V.a and KENO-VI Geometry Models

Description: Criticality safety analyses often require detailed modeling of complex geometries. Effective visualization tools can enhance checking the accuracy of these models. This report describes the KENO3D visualization tool developed at the Oak Ridge National Laboratory (ORNL) to provide visualization of KENO V.a and KENO-VI criticality safety models. The development of KENO3D is part of the current efforts to enhance the SCALE (Standardized Computer Analyses for Licensing Evaluations) computer software system.
Date: June 1, 2000
Creator: Horwedel, J. E. & Bowman, S. M.
Partner: UNT Libraries Government Documents Department

The Kull IMC package

Description: We describe the Kull IMC package, and Implicit Monte Carlo Program written for use in A and X division radiation hydro codes. The Kull IMC has been extensively tested. Written in C++ and using genericity via the template feature to allow easy integration into different codes, the Kull IMC currently runs coupled radiation hydrodynamic problems in 2 different 3D codes. A stand-alone version also exists, which has been parallelized with mesh replication. This version has been run on up to 384 processors on ASCI Blue Pacific.
Date: October 1, 1998
Creator: Gentile, N A; Keen,N & Rathkopf, J
Partner: UNT Libraries Government Documents Department

Large-signal klystron simulations using KLSC

Description: The authors describe large-signal klystron simulations using the particle-in-cell code KLSC. This code uses the induced-current model to describe the steady-state cavity modulations and resulting rf fields, and advances the space-charge fields through maxwell`s equations. In this paper, an eight-cavity, high-power S-band klystron simulation is used to highlight various aspects of this simulation technique. In particular, there are specific issues associated with modeling the input cavity, the gain circuit, and the large-signal circuit (including the output cavities), that have to be treated carefully.
Date: October 1, 1997
Creator: Carlsten, B. E. & Ferguson, P.
Partner: UNT Libraries Government Documents Department

An authentication infrastructure for today and tomorrow

Description: The Open Software Foundation`s Distributed Computing Environment (OSF/DCE) was originally designed to provide a secure environment for distributed applications. By combining it with Kerberos Version 5 from MIT, it can be extended to provide network security as well. This combination can be used to build both an inter and intra organizational infrastructure while providing single sign-on for the user with overall improved security. The ESnet community of the Department of Energy is building just such an infrastructure. ESnet has modified these systems to improve their interoperability, while encouraging the developers to incorporate these changes and work more closely together to continue to improve the interoperability. The success of this infrastructure depends on its flexibility to meet the needs of many applications and network security requirements. The open nature of Kerberos, combined with the vendor support of OSF/DCE, provides the infrastructure for today and tomorrow.
Date: June 1, 1996
Creator: Engert, D.E.
Partner: UNT Libraries Government Documents Department

Knob manager (KM) operators guide

Description: KM, Knob Manager, is a tool which enables the user to use the SUNDIALS knob box to adjust the settings of the control system. The followings are some features of KM: dynamic knob assignments with the user friendly interface; user-defined gain for individual knob; graphical displays for operating range and status of each process variable is assigned; backup and restore one or multiple process variable; save current settings to a file and recall the settings from that file in future.
Date: October 8, 1993
Partner: UNT Libraries Government Documents Department

KENO lifetimes

Description: When performing k-eigenvalue solutions with KENO-V.a, two different prompt neutron lifetimes are estimated - a system lifetime and a neutron generation time. The meaning of these two lifetimes has been ascertained by comparing values of various neutron lifespans/lifetimes predicted by MCNP and DANTSYS based on the neutron-balance theory. The system lifetime in KENO-Va corresponds to the unweighted removal lifetime calculated by both MCNP and DANTSYS. The unweighted removal lifetime is the average time between removal events resulting from a neutron absorption or a neutron leakage. The generation time in KENO-V.a corresponds to the fission lifespan calculated by MCNP, where the fission lifespan in MCNP represents the average time for a newly born neutron to cause another fission. As such, the generation time in KENO-Va does not represent the generation time that appears in the point kinetic model. The generation time in the point kinetic model is the adjoint-weighted removal lifetime divided by k{sub eff}, which is identically equal to the adjoint-weighted neutron production rate. In small bare systems operating in the vicinity of delayed critical, the difference between the adjoint-weighted neutron generation time and the fission lifespan can be as small as a few percent. However, in reflected systems, the difference between these two quantities can be several orders of magnitude. In conclusion, the prompt neutron generation time predicted by KENO-Va corresponds to the fission lifespan of a prompt neutron in a given system. The fission lifespan is the average time from birth-to-fission and, in general, is not a good approximation for the adjoint-weighted neutron generation time that appears in the point-kinetic model.
Date: January 30, 1997
Creator: Petrie, L.; Parsons, D.K. & Spriggs, G.D.
Partner: UNT Libraries Government Documents Department

Nuclear criticality safety aspects of gaseous uranium hexafluoride (UF{sub 6}) in the diffusion cascade

Description: This paper determines the nuclear safety of gaseous UF{sub 6} in the current Gaseous Diffusion Cascade and auxiliary systems. The actual plant safety system settings for pressure trip points are used to determine the maximum amount of HF moderation in the process gas, as well as the corresponding atomic number densities. These inputs are used in KENO V.a criticality safety models which are sized to the actual plant equipment. The ENO V.a calculation results confirm nuclear safety of gaseous UF{sub 6} in plant operations..
Date: April 1, 1997
Creator: Huffer, J.E.
Partner: UNT Libraries Government Documents Department

A particle numerical model for wall film dynamics in port-injected engines

Description: To help predict hydrocarbon emissions during cold-start conditions the authors are developing a numerical model for the dynamics and vaporization of the liquid wall films formed in port-injected spark-ignition engines and incorporating this model in the KIVA-3 code for complex geometries. This paper summarizes the current status of the project and presents illustrative example calculations. The dynamics of the wall film is influenced by interactions with the impinging spray, the wall, and the gas flow near the wall. The spray influences the film through mass, tangential momentum, and energy addition. The wall affects the film through the no-slip boundary condition and heat transfer. The gas alters film dynamics through tangential stresses and heat and mass transfer in the gas boundary layers above the films. New wall functions are given to predict transport in the boundary layers above the vaporizing films. It is assumed the films are sufficiently thin that film flow is laminar and that liquid inertial forces are negligible. Because liquid Prandtl numbers are typically about then, unsteady heating of the film should be important and is accounted for by the model. The thin film approximation breaks down near sharp corners, where an inertial separation criterion is used. A particle numerical method is used for the wall film. This has the advantages of compatibility with the KIVA-3 spray model and of very accurate calculation of convective transport of the film. The authors have incorporated the wall film model into KIVA-3, and the resulting combined model can be used to simulate the coupled port and cylinder flows in modern spark-ignition engines. They give examples by comparing computed fuel distributions with closed- and open-valve injection during the intake and compression strokes of a generic two-valve engine.
Date: September 1, 1996
Creator: O`Rourke, P.J. & Amsden, A.A.
Partner: UNT Libraries Government Documents Department

KINETICS: A computer program to analyze chemical reaction data. Revision 2

Description: KINETICS (Version 3.2) is a copyrighted, user-friendly kinetics analysis computer program designed for reactions such-as kerogen or polymer decomposition. It can fit rate parameters to chemical reaction data (rate or cumulative reacted) measured at a series of constant temperatures, constant heating rates, or arbitrary thermal histories. The program uses two models with conversion-dependent Azrhenius parameters and two models with activation energy distributions. The discrete distribution model fits an average frequency factor and relative fractions and activation energies for up to 25 parallel, fast-order reactions. The Gaussian distribution model fits a frequency factor, activation energy, Gaussian distribution parameter, and reaction order for up to 3 parallel reactions. For both distribution models, if the experiments are at a series of constant heating rates, the program uses a very fast approximate fitting procedure to determine possible initial parameter-estimates for the subsequent nonlinear regression analysis. This increases the probability that the regression analysis will properly. converge with a minimum of computer time. Once convergence is reached by the discrete model, the parameter space is further systematically searched to achieve global convergence. With the Gaussian model, the calculated rates or integrals can be convoluted with an experimental tracer signal during the nonlinear regression to account for dispersion effects often found in real chemical reaction data. KINETICS can also be used in an application mode to calculate reaction rates and integrals for previously determined Gaussian or discrete, parameters, using an arbitrary thermal history. Four additional models have been incorporated for the kinetics analysis of polymers and other materials, including some kerogens, which have a reaction-rate profile that is narrower than that for a single first-order reaction.
Date: September 1, 1994
Creator: Braun, R.L. & Burnham, A.K.
Partner: UNT Libraries Government Documents Department

KrasMAS: Implementation of a nuclear material computerized accounting system at the Mining and Chemical Combine through the Russian/US cooperative MPC and A program

Description: The Russian/US Mining and Chemical Combine (Gorno-Kimichesky Kombinat, GKhK, also referred to as Krasnoyarsk-26) Material Protection, Control and Accounting (MPC and A) project was initiated in June 1996. A critical component of the ongoing cooperative MPC and A enhancements at the GKhK is the implementation of a computerized nuclear material control and accountability (MC and A) system. This system must meet the MC and A requirements of the GKhK by integrating the information generated by numerous existing and new MC and A components in place at the GKhK (e.g., scales, bar-code equipment, NDA measurement systems). During the first phase of this effort, the GKhK adapted CoreMAS (developed at Los Alamos National Laboratory) for use in the PuO{sub 2} storage facility. This included formulation of Web-based user interfaces for plant personnel, Russification of the existing user interface, and at the functional level, modification of the CoreMAS stored procedures. The modified system is referred to as KrasMAS and builds upon completed work on CoreMAS. Ongoing efforts include adding GKhK specific report forms and expanding the functionality of the system for implementation at the radiochemical processing and reactor plants of the GKhK. Collaborations with other Russian facilities for appropriate parts of these efforts will be pursued.
Date: December 31, 1998
Creator: Dorofeev, K.V.; Zhidkov, V.V.; Martinez, B.J.; Perry, R.T. & Scott, S.C.
Partner: UNT Libraries Government Documents Department

Monte Carlo verification of point kinetics for safety analysis of nuclear reactors

Description: Monte Carlo neutron transport methods can be used to verify the applicability of point kinetics for safety analysis of nuclear reactors. KENO-NR was used to obtain the transfer function of the Advanced Neutron Source reactor and the time delay between the core power production and the external detectors, a parameter of interest to the safety systems design. The good agreement between the Monte Carlo generated transfer function and the point kinetics transfer function validates that the uncommon ANS geometry does not preclude the use of point kinetics in the frequency range that was investigated. Various features of the power spectral densities also demonstrated the applicability of point kinetics. The time delay was obtained from the cross-power spectral density (CPSD) and is {approximately}15 ms. These analyses show that frequency analysis can be used experimentally to investigate the validity of the use of point kinetics models in critical experiments or zero power testing of reactors.
Date: June 1, 1995
Creator: Valentine, T.E. & Mihalczo, J.T.
Partner: UNT Libraries Government Documents Department

Validation of multigroup neutron cross sections and calculational methods for the advanced neutron source against the FOEHN critical experiments measurements

Description: The FOEHN critical experiment was analyzed to validate the use of multigroup cross sections and Oak Ridge National Laboratory neutronics computer codes in the design of the Advanced Neutron Source. The ANSL-V 99-group master cross section library was used for all the calculations. Three different critical configurations were evaluated using the multigroup KENO Monte Carlo transport code, the multigroup DORT discrete ordinates transport code, and the multigroup diffusion theory code VENTURE. The simple configuration consists of only the fuel and control elements with the heavy water reflector. The intermediate configuration includes boron endplates at the upper and lower edges of the fuel element. The complex configuration includes both the boron endplates and components in the reflector. Cross sections were processed using modules from the AMPX system. Both 99-group and 20-group cross sections were created and used in two-dimensional models of the FOEHN experiment. KENO calculations were performed using both 99-group and 20-group cross sections. The DORT and VENTURE calculations were performed using 20-group cross sections. Because the simple and intermediate configurations are azimuthally symmetric, these configurations can be explicitly modeled in R-Z geometry. Since the reflector components cannot be modeled explicitly using the current versions of these codes, three reflector component homogenization schemes were developed and evaluated for the complex configuration. Power density distributions were calculated with KENO using 99-group cross sections and with DORT and VENTURE using 20-group cross sections. The average differences between the measured values and the values calculated with the different computer codes range from 2.45 to 5.74%. The maximum differences between the measured and calculated thermal flux values for the simple and intermediate configurations are {approx} 13%, while the average differences are < 8%.
Date: May 1, 1995
Creator: Smith, L.A.; Gallmeier, F.X. & Gehin, J.C.
Partner: UNT Libraries Government Documents Department

KRAKEN, a numerical model of RHIC impedances

Description: The simulation code KRAKEN confirms analytical predictions of head-tail stability criteria, in the presence of momentum dependent linear coupling. It also confirms that resistive wall transverse wake fields are not a serious threat to strong head-tail stability in RHIC, at the vulnerable stage of proton injection. Equation 10, derived from the perspective of two macroparticles, potentially offers a very convenient seminumerical evaluation of the effects of arbitrary transverse wake potentials. It remains to be seen how well the two macroparticle results correlate with simulations using, say, 100 macroparticles. KRAKEN is still under rapid development. Future plans are to include resonant wakefields, multiple bunches, space charge wakefields, betatron detuning, and a connection to the detailed RHIC impedance database.
Date: May 1, 1995
Creator: Peggs, S. & Mane, V.
Partner: UNT Libraries Government Documents Department

Kearney and Trecker Milwaukee Matic 600

Description: A computer model of a Kearney and Tracker (K and T) Milwaukee Matic 600 (MM600) with a Gemini controller for use under the Deneb Robotics, Inc. simulation environment has been constructed. The simulation uses the K and T controller and standard MM600 machine geometry. Both the machine geometry and the controller are provided. The machine has been constructed using K and T`s standard machine dimensions and setup. The controller simulation addresses the most typically used NC codes, but may not be setup for extremely specialized functions. The machine geometry has been reduced to simulate only those components and surfaces which could possibly interfere or collide with other machine components or the workpiece envelope. The level of detail has been reduced to a functional level to enhance computational performance during simulation. The model may be directly used in the Virtual-NC environment for a complete machining simulator, or the model with kinematics may be used in IGRIP. The geometry is suitable for translation into standard file formats for importation into other systems.
Date: October 21, 1994
Creator: Seat, J.E. & Rogers, K.S.
Partner: UNT Libraries Government Documents Department