3 Matching Results

Search Results

Advanced search parameters have been applied.

Advanced polymer PV system: PVMaT 4A1 annual report, September 1995--September 1996

Description: Purpose of this subcontract was to produce lower module and systems costs through the innovative use of polymeric materials. The Innovative Mounting System (IMS) was developed and testing begun during the first year of this contract. IMS reduces the cost of installed PV systems by reducing labor and materials costs both in the factory and in field installation. It incorporates several advances in polymers, processing methods and product design. An advanced backskin material permits elimination of the conventional Al perimeter frame by protecting and sealing the edge and by direct bonding of multifunctional mounting bars. Electrical interconnection is easier and more reliable with a new junction box. Feasibility of a non-vacuum, high-throughput lamination method was also demonstrated, involving a novel transparent encapsulant with UV stabilization package that can be laminated in air and which should lead to longer field life than conventional designs. The first-year program culminated in the fielding of prototype products with the new encapsulant, backskin, junction box, frameless edge seal, and IMS. Feedback and marketing information from potential customers were solicited. Result promises a $0.50/watt manufacturing and system cost reductions as well as increased system lifetime. The second year will complete refinement and test of the encapsulant and backskin, complete the new lamination method, and refine product designs.
Date: June 1, 1997
Creator: Hanoka, J.; Chleboski, R.; Farber, M.; Fava, J.; Kane, P. & Martz, J.
Partner: UNT Libraries Government Documents Department

Silicon-Film(TM) Solar Cells by a Flexible Manufacturing System: Final Report, 16 April 1998 -- 31 March 2001

Description: This report describes the overall goal to engineer and develop flexible manufacturing methods and equipment to process Silicon-Film solar cells and modules. Three major thrusts of this three-year effort were to: develop a new larger-area (208 mm x 208 mm) Silicon-Film solar cell, the APx-8; construct and operate a new high-throughput wafer-making system; and develop a 15-MW single-thread manufacturing process. Specific technical accomplishments from this period are: Increase solar cell area by 80%, increase the generation capacity of a Silicon-Film wafer-making system by 350%, use a new in-line HF etch system in solar cell production, design and develop an in-line NaOH etch system, eliminate cassettes in solar cell processing, and design a new family of module products.
Date: February 1, 2002
Creator: Rand, J.
Partner: UNT Libraries Government Documents Department

Specific PVMaT R and D in CdTe Product Manufacturing; Phase II Annual Subcontract Technical Report; May 1999--September 2000

Description: Just prior to the beginning of Phase II of the PVMaT project Solar Cells, Inc, (SCI) and True North Partners of Scottsdale, AZ, formed a joint venture partnership name First Solar, LLC. By the end of 1999, this event resulted in the construction of a new major manufacturing plant for photovoltaic modules, based on cadmium telluride, located in Perrysburg, a suburb of Toledo, Ohio. This plant was designed to be capable of producing PV modules at a rate of 100 MW per year within about three years. Significantly, a new semiconductor coating system, the heat of the production line, has already shown the capability of the 100 MW per year rate. These events have led to the expansion of the effort on the PVMaT project that included the former SCI team in Toledo, Ohio, a new team of engineering subcontractor, Product Search, Inc., and, later, a new laser team from First Solar, both from Scottsdale, Arizona. These three teams joined in a collaborative effort on Tasks 4: Manufacturing Line Improvements, on Task 5: Product Readiness, and on Task Environmental, Health, and Safety Issues. One Task 4 goal was to address the technical issues of the failed UL 1703 qualification testing in Phase I. Completing this goal, along with module lamination improvement done in Task 5, was instrumental in the design, fabrication, and installation of a high-throughput solar finishing line. The main components of this line, also a Task 4 project, were successfully tested in module finalization on the production line. Developing a novel, single-laser scribing system was another major accomplishment. In Task 5, the major activity was improved module lamination. Progress in Tasks 4 and 5 resulted in improved modules that were submitted for UL 1703 qualification testing. In March 2000, a new encapsulation process came under development, in which ...
Date: January 22, 2001
Creator: McMaster, A.
Partner: UNT Libraries Government Documents Department