9 Matching Results

Search Results

Advanced search parameters have been applied.

Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic nad+/nadh co-factors and [cp*rh(bpy)h]+ for selective organic synthesis

Description: The biocatalytic, regioselective hydroxylation of 2-hydroxybiphenyl to the corresponding catechol was accomplished utilizing the monooxygenase 2-hydroxybiphenyl 3-monooxygenase (HbpA). The necessary natural nicotinamide adenine dinucleotide (NAD{sup +}) co-factor for this biocatalytic process was replaced by a biomimetic co-factor, N-benzylnicotinamide bromide, 1a. The interaction between the flavin (FAD) containing HbpA enzyme and the corresponding biomimetic NADH compound, N-benzyl-1,4-dihdronicotinamide, 1b, for hydride transfers, was shown to readily occur. The in situ recycling of the reduced NADH biomimic 1b from 1a was accomplished with [Cp*Rh(bpy)H](Cl); however, productive coupling of this regeneration reaction to the enzymatic hydroxylation reaction was not totally successful, due to a deactivation process concerning the HbpA enzyme peripheral groups; i.e., -SH or -NH{sub 2} possibly reacting with the precatalyst, [Cp*Rh(bpy)(H{sub 2}O)](Cl){sub 2}, and thus inhibiting the co-factor regeneration process. The deactivation mechanism was studied, and a promising strategy of derivatizing these peripheral -SH or -NH{sub 2} groups with a polymer containing epoxide was successful in circumventing the undesired interaction between HbpA and the precatalyst. This latter strategy allowed tandem co-factor regeneration using 1a or 2a, [Cp*Rh(bpy)(H2O)](Cl){sub 2}, and formate ion, in conjunction with the polymer bound, FAD containing HbpA enzyme to provide the catechol product.
Date: March 9, 2004
Creator: Lutz, Jochen; Hollman, Frank; Ho, The Vinh; Schnyder, Adrian; Fish, Richard H. & Schmid, Andreas
Partner: UNT Libraries Government Documents Department

Light responses in Photoperiodism in Arabidopsis thaliana

Description: ADO1: An Arabidopsis blue light photoreceptor We have reported the characterization of an Arabidopsis gene encoding the ADAGIO 1 (ADO1) protein (Jarillo et al., 2001a). ADO1 contains a LOV domain, similar to WHITE COLLAR 1 (WC1), a photoreceptor for entrainment of Neurospora circadian rhythms (Froehlich et al., 2002), as well as PHOT1 and PHOT2, the blue light photoreceptors for phototropism (Briggs et al., 2001; Christie et al., 1998; Jarillo et al., 2001b; Kinoshita et al., 2001). Loss of function ado1 mutants show an unusually long periodicity for their free running circadian rhythm (Jarillo et al., 2001a). This observation holds for plants grown under white light as well as blue light and surprisingly, plants grown under red light also show altered circadian properties. The similarity of the LOV domain of ADO1 to those of PHOT1, PHOT2 and WC1 (known flavoprotein photoreceptors) as well as the genetic and molecular properties of ADO1, indicate that ADO1 is likely a new class of blue light photoreceptor. Indeed, the LOV domain of the related FKF1/ADO3 has been shown to bind FMN, and exhibit the in vitro photochemistry characteristic of PHOT1 (Imaizumi et al., 2003). Furthermore, ZTL/ADO1 has been shown to participate in the circadian and proteasome mediated degradation of the Arabidopsis clock protein, TOC1 (Mas et al., 2003). We also showed that the ado1 mutation selectively confers hypersensitivity to red light — when grown under red light (but not blue light) the ado1 mutant possesses an unusually short hypocotyl. This red light hypersensivity is even more severe in a triple ado1 ado2 ado3 mutant — ADO2 and ADO3 being the two other members of this ADAGIO gene family. This finding of a mutant phenotype under red light is somewhat unexpected for a protein thought to function as a photoreceptor for blue light. We have pursued ...
Date: August 1, 2006
Creator: Cashmore, Anthony R.
Partner: UNT Libraries Government Documents Department

Real-time monitoring and manipulation of single bio-molecules in free solution

Description: The observation and manipulation of single biomolecules allow their dynamic behaviors to be studied to provide insight into molecular genetics, biochip assembly, biosensor design, DNA biophysics. In a PDMS/glass microchannel, a nonuniform electroosmotic flow (EOF) was created. By using a scanning confocal fluorescence microscope and total internal-reflection fluorescence microscope (TIRFM), we demonstrated that negatively charged DNA molecules were focused by the nonuniform EOF into a thin layer at the glass surface. This phenomenon was applied to selectively detect target DNA molecules without requiring the separation of excessive probes and can be applied continuously to achieve high throughput. A variable-angle-TIRFM was constructed for imaging single DNA molecule dynamics at a solid/liquid interface. Implications we have are that the measured intensities cannot be used directly to determine the distances of molecules from the surface and the experimental counting results depict the distance-dependent dynamics of molecules near the surface; Molecules at low ionic strengths experience electrostatic repulsion at distances much further away from the surface than the calculated thickness of the electrical double layer. {delta}-DNA was employed as a nanoprobe for different functionalized surfaces to elucidate adsorption in chromatography. The 12-base unpaired ends of this DNA provide exposed purine and pyrimidine groups for adsorption. Patterns of self-assembled monolayers (SAMs) and patterns of metal oxides are generated. By recording the real-time dynamic motion of DNA molecules at the SAMs/aqueous interface, the various parameters governing the retention of an analyte during chromatographic separation can be studied. Even subtle differences among adsorptive forces can be revealed. Dynamic conformational changes of the prosthetic group, flavin adenine dinucleotide (FAD), in flavoprotein NADH peroxidase, in thioredoxin reductase, and in free solution were monitored with TIWM. FAD bound loosely in the proteins changed from the stacked conformation to the unstacked conformation upon laser excitation. FAD in free solution not only ...
Date: August 1, 2005
Creator: Li, Hung-Wing
Partner: UNT Libraries Government Documents Department


Description: Research activities in the second quarter have largely been a continuation of efforts previously described in the first quarterly report as well as a degree of redirection of effort as a result of discussions during the first quarterly meeting held in San Diego. Chemical synthesis efforts have been refined and are currently being used to support generation of substrates for evaluation and evolution of enzymes for their oxidation. Analysis of the sulfur species in Petro Star diesel, CED extract and refinement of the speciation data is nearly complete. Molecular biology efforts continue with the cloning, expression and characterization of the DszA and DszC proteins as well as the flavin reductases to support regeneration of the essential FMN cofactors. In addition, we have initiated an evolution effort for the extension and improvement of DszA enzyme activity using Diversa's Gene Site Saturation Mutagenesis (GSSM{trademark}) technology. To support the evolution effort as well as of characterization of enzyme activities on a variety of substrates, a high-throughput mass spectroscopy-based assay has been developed. Two selection/screen strategies for the discovery and evolution of biocatalyst enzyme have been developed and are being evaluated for performance using gene libraries constructed from known biodesulfurization strains and environmental libraries.
Date: April 1, 2003
Creator: Bonde, Steven E. & Nunn, David
Partner: UNT Libraries Government Documents Department

Hydride transfer made easy in the oxidation of alcohols catalyzed by choline oxidase

Description: Choline oxidase (E.C. catalyzes the two-step, four-electron oxidation of choline to glycine betaine with betaine aldehyde as enzyme-associated intermediate and molecular oxygen as final electron acceptor (Scheme 1). The gem-diol, hydrated species of the aldehyde intermediate of the reaction acts as substrate for aldehyde oxidation, suggesting that the enzyme may use similar strategies for the oxidation of the alcohol substrate and aldehyde intermediate. The determination of the chemical mechanism for alcohol oxidation has emerged from biochemical, mechanistic, mutagenetic, and structural studies. As illustrated in the mechanism of Scheme 2, the alcohol substrate is initially activated in the active site of the enzyme by removal of the hydroxyl proton. The resulting alkoxide intermediate is then stabilized in the enzyme-substrate complex via electrostatic interactions with active site amino acid residues. Alcohol oxidation then occurs quantum mechanically via the transfer of the hydride ion from the activated substrate to the N(5) flavin locus. An essential requisite for this mechanism of alcohol oxidation is the high degree of preorganization of the activated enzyme-substrate complex, which is achieved through an internal equilibrium of the Michaelis complex occurring prior to, and independently from, the subsequent hydride transfer reaction. The experimental evidence that support the mechanism for alcohol oxidation shown in Scheme 2 is briefly summarized in the Results and Discussion section.
Date: June 8, 2008
Creator: Gadda, G.; Orville, A.; Pennati, A.; Francis, K.; Quaye, O.; Yuan, H. et al.
Partner: UNT Libraries Government Documents Department

BIO-ORGANIC CHEMISTRY QUARTERLY REPORT. December 1962 throughFebruary 1963

Description: This report covers the following titles: (1) A versatile solvent to replace phenol for the paper chromatography of radioactive intermediary metabolites; (2) Chromatography of plant lipids on alumina paper; (3) Quinone and pigment composition of chloroplasts and quantasomes from Spinacea oleracea; (4) The lipid composition of chloroplast lamellae from Spinacea oleracea; (5) Metal chelates and photochemistry of flavins; (6) Photoinduced ESR in some solutions of organic electron donors and acceptors; (7) Fluorescence of oriented dye-macromolecule complexes--Theoretical study; (8) Formation of adenine by electron irradiation of methane, ammonia, and water; (9) Uptake of organic compounds by planarians; (10) The planaria: Absorption spectrum, cell disaggregation, and studies on homogenates.
Date: March 29, 1963
Partner: UNT Libraries Government Documents Department

Polarized absorption spectra of flavin mononucleotide in flavodoxin crystals

Description: Although it has long been recognized that protein environments modulate the electronic structure of flavins, the precise nature of the interactions that lead to a specific effect are still poorly understood. Detailed knowledge of flavin environments from high resolution crystal structures of flavoproteins, coupled with spectroscopic measurements and molecular orbital calculations should begin to clarify the relative importance of the various possible interactions in a given system. Changes in optical spectra reflect changes in the electronic structure. Electronic transitions are characterized by their energy, intensity, and transition dipole moment direction, {mu}. A comprehensive description of the effect of the protein environment requires a knowledge of all three parameters. The first two are readily obtained from isotropic solution spectra of flavoproteins, the third requires oriented samples. 3 refs., 1 fig., 1 tab.
Date: January 1, 1990
Creator: Hanson, L.K. (Brookhaven National Lab., Upton, NY (USA)); Christoph, G.W.; Hofrichter, J. (National Insts. of Health, Bethesda, MD (USA). Lab. of Chemical Physics) & Ludwig, M.L. (Michigan Univ., Ann Arbor, MI (USA). Div. of Biophysics Research)
Partner: UNT Libraries Government Documents Department

Energy transfer mechanisms in photobiological reactions. Final report, 1 April 1960--31 March 1979. [Photodynamic processes in selected biomolecules]

Description: This project was concerned primarily with studies of the mechanisms of the sensitized photooxidation of selected biomolecules using a variety of phtosensitizers. Such reactions are often termed photodynamic processes. In particular we have carried out steady-state kinetic studies, flash photolysis and spectral studies, and product formation studies of the sensitized photooxidation of the five susceptible amino acids (cycteine, histidine, methonine, tryptophan, and tyrosine) and their derivatives, as well as purines and pyrimidines. A number of studies were also carried out on the mechanisms of the photodynamic inactivation of enzymes (trypsin, ribonuclease, lysozyme). Mechanism of photosensitization were studied using a variety of sensitizers including flavins, porphyrins, and a number of synthetic dyes (substituted fluoresceins, acridines, thyazines).
Date: March 31, 1979
Creator: Spikes, J.D.
Partner: UNT Libraries Government Documents Department