136 Matching Results

Search Results

Advanced search parameters have been applied.

Particle-In-Cell/Monte Carlo Simulation of Ion Back Bombardment in Photoinjectors

Description: In this paper, we report on studies of ion back bombardment in high average current dc and rf photoinjectors using a particle-in-cell/Monte Carlo method. Using H{sub 2} ion as an example, we observed that the ion density and energy deposition on the photocathode in rf guns are order of magnitude lower than that in a dc gun. A higher rf frequency helps mitigate the ion back bombardment of the cathode in rf guns.
Date: March 2, 2009
Creator: Qiang, Ji; Corlett, John & Staples, John
Partner: UNT Libraries Government Documents Department

Surface Dependent Electron and Negative Ion Density in Inductively Coupled Discharges

Description: Electron and negative ion density have been measured in a modfied Applied Materials DPS metal etch chamber using gas mixtures of BCl{sub 3}, Cl{sub 2} and Ar. Measurements were performed for four dflerent substrate types to examine the influence of surface material on the bulk plasma properties; aluminurq alumina, photoresist and 50 percent patterned aluminum / photoresist. Electron densities in the Cl{sub 2} / BCl{sub 3} mixtures varied from 0.25 to 4 x 10{sup 11} cm{sup -3}. Photodetachment measurements of the negative ion density indicate that the negative ion density was smaller than the electron density and that the electron to negative ion density ratio varied between 1 and 6. The presence of photoresist had a dominant intluence on the electron and negative ion density compared to alumina and aluminum surfaces. In most cases, the electron density above wafers covered with photoresist was a factor of two lower while the negative ion density was a factor of two higher than the aluminum or alumina surfaces.
Date: January 18, 1999
Creator: Blain, M.G.; Hamilton, T.W.; Hebner, G.A.; Jarecki, R.L. & Nichols, C.A.
Partner: UNT Libraries Government Documents Department

Enhanced Electron Attachment to Highly-Excited States of Molecules: Implications for Plasma Processing Discharges

Description: Recent studies show that large negative ion densities exist in plasma processing discharges, including those of weakly electronegative gases such as SiH{sub 4} and CF{sub 4}. Also, there is strong evidence that the negative ions could be the precursors for particulate formation in processing discharges. Even though it is now well established that large concentrations of negative ions exist in processing discharges, and that they play a crucial role in such discharges, the source of such high negative ion densities has not been clarified. In particular, gases like SiH{sub 4} and CH{sub 4}, which are commonly used in processing discharges, attach electrons only weakly in their ground electronic states (see the references). Due to the lack of an alternative mechanism, the origin of large negative ion densities in such weakly electronegative gases has been frequently attributed to electron attachment to radicals (molecular fragments) or other byproducts produced in the discharge. This hypothesis had not been tested in direct electron attachment measurements.
Date: June 29, 1998
Creator: Datskos, P.G.; Ding, W.; McCorkle, D.L. & Pinnaduwage, L.A.
Partner: UNT Libraries Government Documents Department

Pick-up ion energization at the termination shock

Description: One-dimensional hybrid simulations are used to investigate how pickup ions are energized at the perpendicular termination shock. Contrary to previous models based on pickup ion energy gain by repeated crossings of the shock front (shock surfing) or due to a reforming shock front, the present simulations show that pickup ion energy gain involves a gyro-phasedependent interaction with the inhomogeneous motional electric field at the shock. The process operates at all relative concentrations of pickup ion density.
Date: January 1, 2009
Creator: Gary, S Peter; Winske, Dan; Wu, Pin & Schwadron, N A
Partner: UNT Libraries Government Documents Department

Positive and negative chlorine ion kinetics in inductively-coupled Cl{sub 2}BCl{sub 3} plasmas

Description: Discharges in gas mixtures of Cl{sub 2}, BCl{sub 3}, Ar, and N{sub 2} are used by the integrated circuit industry for metal etching, and are as yet not well understood, especially in inductively-coupled plasma (ICP) sources which are rapidly becoming the industry standard for etching tools. An essential parameter that must be measured in these plasmas is the density of ions, both positive and negative, formed in the plasma. In the work presented here, LIF and laser photodetachment were used to measure relative metastable chlorine ion CL{sup +}* density and temperature and absolute Cl{sup {minus}} density as a function of gas mixture.
Date: May 1, 1997
Creator: Fleddermann, C.B. & Hebner, G.A.
Partner: UNT Libraries Government Documents Department

Numerical Tokamak Turbulence Calculations on the CRAY T3E

Description: Full cross section calculations of ion-temperature-gradient-driven turbulence with Landau closure are being carried out as part of the Numerical Tokamak Turbulence Project, one of the U.S. Department of Energy`s Phase II Grand Challenges. To include the full cross section of a magnetic fusion device like the tokamak requires more memory and CPU time than is available on the National Energy Research Scientific Computing Center`s (NERSC`s) shared-memory vector machines such as the CRAY C90 and J90. Calculations of cylindrical multi-helicity ion-temperature-gradient-driven turbulence were completed on NERSC`s 160-processor distributed-memory CRAY T3E parallel computer with 256 Mbytes of memory per processor. This augurs well for yet more memory and CPU intensive calculations on the next-generation T3E at NERSC. This paper presents results on benchmarks with the current T3E at NERSC. Physics results pertaining to plasma confinement at the core of tokamaks subject to ion-temperature-gradient-driven-turbulence are also highlighted. Results at this resolution covering this extent of physical time were previously unattainable. Work is in progress to increase the resolution, improve the performance of the parallel code, and include toroidal geometry in these calculations in anticipation of the imminent arrival of a fully configured,512-processor, T3E-900 model.
Date: December 31, 1997
Creator: Lynch, V.E., Leboeuf, J.N., Carreras, B.A.
Partner: UNT Libraries Government Documents Department

Negative Ion Density Fronts

Description: Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas.
Date: December 18, 2000
Creator: Kaganovich, Igor
Partner: UNT Libraries Government Documents Department

Signal Propagation in Collisional Plasma with Negative Ions

Description: The transport of charged species in collisional currentless plasmas is traditionally thought of as a diffusion-like process. In this paper, it is demonstrated that, in contrast to two-component plasma, containing electrons and positive ions, the transport of additional ions in multi-species plasmas is not governed by diffusion, rather described by nonlinear convection. As a particular example, plasmas with the presence of negative ions have been studied. The velocity of a small perturbation of negative ions was found analytically and validated by numerical simulation. As a result of nonlinear convection, initially smooth ion density profiles break and form strongly inhomogeneous shock-like fronts. These fronts are different from collisionless shocks and shocks in fully ionized plasma. The structure of the fronts has been found analytically and numerically.
Date: December 18, 2000
Creator: Kaganovich, I.; Berezhnoi, S.V. & Shin, C.B.
Partner: UNT Libraries Government Documents Department

Confinement of Pure Ion Plasma in a Cylindrical Current Sheet

Description: A novel method for containing a pure ion plasma at thermonuclear densities and temperatures has been modeled. The method combines the confinement properties of a Penning-Malmberg trap and some aspects of the magnetic field geometry of a pulsed theta-pinch. A conventional Penning trap can confine a uniform-density plasma of about 5x1011 cm-3 with a 30-Tesla magnetic field. However, if the axial field is ramped, a much higher local ion density can be obtained. Starting with a 107 cm-3 trapped deuterium plasma in a conventional Penning-Malmberg trap at the Brillouin limit (B = 0.6 Tesla), the field is ramped to 30 Tesla. Because the plasma is comprised of particles of only one sign of charge, transport losses are very low, i.e., the conductivity is high. As a result, the ramped field does not penetrate the plasma and a diamagnetic surface current is generated, with the ions being accelerated to relativistic velocities. To counteract the inward j x B forces from this induced current, additional ions are injected into the plasma along the axis to increase the density (and mutual electrostatic repulsion) of the target plasma. In the absence of the higher magnetic field in the center, the injected ions drift outward until a balance is established between the outward driving forces (centrifugal, electrostatic, pressure gradient) and the inward j x B force. An equilibrium calculation using a relativistic, 1-D, cold-fluid model shows that a plasma can be trapped in a hollow, 49-cm diameter, 0.2-cm thick cylinder with a density exceeding 4 x 1014 cm-3.
Date: December 10, 1999
Creator: Phillips, C.K.; Chao, E.H.; Davidson, R.C. & Paul, S.F.
Partner: UNT Libraries Government Documents Department

Electron and Negative Ion Densities in C(2)F(6) and CHF(3) Containing Inductively Coupled Discharges

Description: Electron and negative ion densities have been measured in inductively coupled discharges containing C{sub 2}F{sub 6} and CHF{sub 3}. Line integrated electron density was determined using a microwave interferometer, negative ion densities were inferred using laser photodetachment spectroscopy, and electron temperature was determined using a Langmuir probe. For the range of induction powers, pressures and bias power investigated, the electron density peaked at 9 x 10{sup 12} cm{sup -2} (line-integrated) or approximately 9 x 10{sup 11} cm{sup -3}. The negative ion density peaked at approximately 1.3 x 10{sup 11} cm{sup -3}. A maximum in the negative ion density as a function of induction coil power was observed. The maximum is attributed to a power dependent change in the density of one or more of the potential negative ion precursor species since the electron temperature did not depend strongly on power. The variation of photodetachment with laser wavelength indicated that the dominant negative ion was F{sup -}. Measurement of the decay of the negative ion density in the afterglow of a pulse modulated discharge was used to determine the ion-ion recombination rate for CF{sub 4}, C{sub 2}F{sub 6} and CHF{sub 3} discharges.
Date: December 7, 1999
Partner: UNT Libraries Government Documents Department

Design and operation of the pellet charge exchange diagnostic for measurement of energetic confined alphas and tritons on TFTR

Description: Radially-resolved energy and density distributions of the energetic confined alpha particles in D-T experiments on TFTR are being measured by active neutral particle analysis using low-Z impurity pellet injection. When injected into a high temperature plasma, an impurity pellet (e.g. Lithium or Boron) rapidly ablates forming an elongated cloud which is aligned with the magnetic field and moves with the pellet. This ablation cloud provides a dense target with which the alpha particles produced in D-T fusion reactions can charge exchange. A small fraction of the alpha particles incident on the pellet ablation cloud will be converted to helium neutrals whose energy is essentially unchanged by the charge transfer process. By measuring the resultant helium neutrals escaping from the plasma using a mass and energy resolving charge exchange analyzer, this technique offers a direct measurement of the energy distribution of the incident high-energy alpha particles. Other energetic ion species can be detected as well, such as tritons generated in D-D plasmas and H or He{sup 3} RF-driven minority ion tails. The diagnostic technique and its application on TFTR are described in detail.
Date: May 1, 1996
Creator: Medley, S.S.; Duong, H.H. & Fisher, R.K.
Partner: UNT Libraries Government Documents Department

Thomson scattering diagnostic analyses to determine the energetic particle distributions in TFTR. Final report

Description: Lodestar has been an active participant in the low power Collective Thomson Scattering (CTS) diagnostic at TFTR in collaboration with MIT. Extensive studies were conducted regarding the use of gyrotron scattering as a low cost diagnostic for both energetic ions and alpha particles on TFTR. The numerical scattering code has been improved and compared with similar code developed at JET. The authors have participated and assisted in the CTS experiments through onsite visits and have successfully performed most of the data analysis tasks remotely. Through their analysis on the initial data base accumulated, they are able to understand qualitatively the general features of the anomalous large scattered signal, have proposed an explanation for its generation mechanism, and have suggested a potential new use of CTS as an edge diagnostic.
Date: February 16, 1995
Creator: Aamodt, R.E.; Cheung, P.Y. & Russell, D.A.
Partner: UNT Libraries Government Documents Department

Ion heating and energy partition at the heliospheric termination shock: hybrid simulations and analytical model

Description: The Los Alamos hybrid simulation code is used to examine heating and the partition of dissipation energy at the perpendicular heliospheric termination shock in the presence of pickup ions. The simulations are one-dimensional in space but three-dimensional in field and velocity components, and are carried out for a range of values of pickup ion relative density. Results from the simulations show that because the solar wind ions are relatively cold upstream, the temperature of these ions is raised by a relatively larger factor than the temperature of the pickup ions. An analytic model for energy partition is developed on the basis of the Rankine-Hugoniot relations and a polytropic energy equation. The polytropic index {gamma} used in the Rankine-Hugoniot relations is varied to improve agreement between the model and the simulations concerning the fraction of downstream heating in the pickup ions as well as the compression ratio at the shock. When the pickup ion density is less than 20%, the polytropic index is about 5/3, whereas for pickup ion densities greater than 20%, the polytropic index tends toward 2.2, suggesting a fundamental change in the character of the shock, as seen in the simulations, when the pickup ion density is large. The model and the simulations both indicate for the upstream parameters chosen for Voyager 2 conditions that the pickup ion density is about 25% and the pickup ions gain the larger share (approximately 90%) of the downstream thermal pressure, consistent with Voyager 2 observations near the shock.
Date: January 1, 2009
Creator: Gary, S Peter; Winske, Dan; Wu, Pin; Schwadron, N A & Lee, M
Partner: UNT Libraries Government Documents Department

The role of high Rydberg states in the generation of negative ions in negative-ion discharges

Description: The generation of substantial yields of H{sup {minus}} ions in a laser excited H{sub 2} gas has been reported by Pinnaduwage and Christoforu. These H{sup {minus}} yields have been attributed to (2 + 1) REMP photoexcitation processes leading to dissociative attachment of doubly-excited or superexcited states (SES), or dissociative attachment of high Rydberg product states. The new feature of these experiments is the implied large dissociative attachment rates, of order 10{sup {minus}6} cm{sup 3} sec{sup {minus}1}, values that are orders-of-magnitude larger than the dissociative attachment of the vibrationally excited levels of the ground electronic state. While these laser excitations are not directly applicable to a hydrogen negative-ion discharge, the implication of large dissociative attachment rates to the high Rydberg states may affect both the total negative-ion density and the interpretation of discharge performance. Within the discharge energetic electrons will collisionally excite the higher Rydberg states, and the relative contribution of the dissociative attachment of these states when compared with the dissociative attachment to the ground state vibrational levels, is the topic of this paper.
Date: November 28, 1995
Creator: Hiskes, J.R.
Partner: UNT Libraries Government Documents Department

Condition for production of circulating proton beam with intensity greater than space charge limit.

Description: Transverse e-p instability in proton rings could be damped by increasing the beam density and the rate of secondary particles production above the threshold level, with the corresponding decrease of unstable wavelength {lambda} below the transverse beam size h (increase of beam density n{sub b} and ion density n{sub i} above the threshold level: n{sub b} + n{sub i} > {beta}{sup 2}/(r{sub e} h{sup 2}), where r{sub e} = e{sup 2}/mc{sup 2}). Such island of stability can be reached by a fast charge-exchange injection without painting and enhanced generation of secondary plasma, which was demonstrated in a small scale Proton Storage Ring (PSR) at the Institute of Nuclear Physics, Novosibirsk, Russia. With successful damping of e-p instability, the intensity of circulating proton beam, with a space charge neutralization was increased up to 6 times above a space charge limit. Corresponding tune shift without space charge neutralization should be up to {Delta}v=0.85 x 6 (in the ring with v = 0.85). In this paper, they review experimental observations of transverse instability of proton beams in various rings. they also discuss methods which can be used to damp the instability. Such experimental data could be useful for verification of computer simulation tools developed for the studies of the space charge and instabilities in realistic conditions.
Date: November 19, 2002
Creator: Dudnikov, Vadim
Partner: UNT Libraries Government Documents Department

Unified model of the rf plasma sheath: Part 2, Asymptotic connection formulae

Description: A previously-developed approximation to the first integral of the Poisson equation enables one to obtain solutions for the voltage- current characteristics of a radio-frequency (rf) plasma sheath that are valid over the whole range of inertial response of the ions to an imposed rf voltage or current-specified conditions. The theory reproduced the time-dependent voltage-current characteristics of the two extreme cases corresponding to the Lieberman rf sheath theory and the Metze-Ernie-Oskam theory. In this paper the sheath model is connected to the plasma bulk description, and a prescription is given for the ion relaxation time constant, which determines the time-dependent ion impact energy on the electrode surface. It appears that this connected model should be applicable to those high density, low pressure plasmas in which the Debye length is a small fraction of the ion mean free path, which itself is a small fraction of the plasma dimension.
Date: August 1, 1996
Creator: Riley, M.E.
Partner: UNT Libraries Government Documents Department

First measurements of the ion energy distribution at the divertor strike point during DIII-D disruptions

Description: Plasma/wall interaction studies are being carried out using the Divertor Materials Exposure System (DiMES) on DIII-D. The objective of the experiment is to determine the kinetic energy and flux of deuterium ions reaching the divertor target during argon-induced radiative disruptions. The experiment utilizes a special slotted ion analyzer mounted over a Si sample to collect the fast charge-exchange (CX) deuterium neutrals emitted within the recycled cold neutral layer (CNL) which serves as a CX target for the incident ions. A theoretical interpretation of the experiment reveals a strong forward pitch-angle dependence in the approaching ion distribution function. The depth distribution of the trapped D in the Si sample was measured using low-energy direct recoil spectroscopy. Comparison with the TRIM code using monoenergetic ions indicated that the best fit to the data was obtained for an ion energy of 100 eV.
Date: December 1, 1995
Creator: Parks, P.B.; Brooks, N.H.; West, W.P.; Wong, C.P.C.; Bastasz, R.; Wampler, W.R. et al.
Partner: UNT Libraries Government Documents Department

Alpha diagnostics using pellet charge exchange: Results on TFTR and prospects for ITER

Description: Confinement of alpha particles is essential for fusion ignition and alpha physics studies are a major goal of the TFTR, JET, and ITER DT experiments, but alpha measurements remain one of the most challenging plasma diagnostic tasks. The Pellet Charge Exchange (PCX) diagnostic has successfully measured the radial density profile and energy distribution of fast (0.5 to 3.5 MeV) confined alpha particles in TFTR. This paper describes the diagnostic capabilities of PCX demonstrated on TFTR and discusses the prospects for applying this technique to ITER. Major issues on ITER include the pellet`s perturbation to the plasma and obtaining satisfactory pellet penetration into the plasma.
Date: May 1, 1996
Creator: Fisher, R.K.; Duong, H.H. & McChesney, J.M.
Partner: UNT Libraries Government Documents Department

Progress toward a microsecond duration, repetitive, intense-ion beam for active spectroscopic measurements on ITER

Description: The authors describe the design of an intense, pulsed, repetitive, neutral beam based on magnetically insulated diode technology for injection into ITER for spectroscopic measurements of thermalizing alpha particle and thermal helium density profiles, ion temperature, plasma rotation, and low Z impurity concentrations in the confinement region. The beam is being developed to enhance low signal-to-noise ratios expected with conventional steady-state ion beams because of severe beam attenuation and intense bremstrahlung emission. A 5 GW (e.g., 100 keV, 50 kA) one-microsecond-duration beam would increase the signal by 10{sup 3} compared to a conventional 5 MW beam with signal-to-noise ratios comparable to those from a chopped conventional beam in one second.
Date: June 1, 1996
Creator: Davis, H.A.; Bartsch, R.R. & Barnes, C.W.
Partner: UNT Libraries Government Documents Department

Array of neutral particle analyzers at DIII-D

Description: Local measurements of the fast-ion distribution in auxiliary-heated plasmas are key to understanding the behavior of energetic particles under a variety of conditions, such as beam-ion transport during Alfven instabilities and the acceleration of beam ions by fast waves. For the first time at DIII-D, line-averaged and local measurements of the energetic-particle density (for E = 5--75 keV) are possible using an array of four compact charge-exchange analyzers. The installation consists of three vertically-viewing analyzers with fixed sightlines, measuring particles with {chi} = 90{degree} (where {chi} is the angle between the particle`s velocity and the toroidal direction) and one horizontally-viewing analyzer with a variable sightline, measuring particles with 2{degree}{grave U} {chi} {acute U} 60{degree}. All the analyzers can make passive measurements while three detectors, with sightlines that intersect deuterium heating beams, can make active charge-exchange measurements.
Date: December 1, 1996
Creator: Carolipio, E.M. & Heidbrink, W.W.
Partner: UNT Libraries Government Documents Department

Measurement of impurity ion densities and energies in the divertor and edge regions of Alcator C-Mod tokamak. Final progress report, March 1994--January 1995

Description: The authors are investigating impurity production and transport in the divertor and edge regions of the Alcator C-Mod tokamak through spectroscopic techniques. The emphasis is on the low ionization states found in the edge and divertor regions which are indicative of the physical processes related to impurity generation and particle and energy transport in this region. The authors are using a high-resolution visible/ultraviolet spectrograph capable of measuring the Doppler shifts associated with neutral and ion flows and the Doppler broadening associated with neutral and ion temperatures.
Date: December 31, 1995
Creator: Griem, H.R. & Welch, B.L.
Partner: UNT Libraries Government Documents Department