154 Matching Results

Search Results

Advanced search parameters have been applied.


Description: This project investigated solar variability, power conversion and electric power grid response aspects of high penetration solar PV. These are the primary determining factors for acceptable penetration levels. Therefore, the study not only focused on the power system interactions, but also on the design of advanced power conditioners to explore more efficient design options and to look into advanced control impacts to the higher penetration PV deployment systems. Through extensive laboratory and field testing, the team gathered the essential information to better understand grid characteristics, PV systems configuration and power conditioning systems.
Date: March 31, 2012
Creator: Lai, Jason; Yu, Wensong; Meehan, Kathleen; Key, Tom; Huque, Aminul; Smith, Jeff et al.
Partner: UNT Libraries Government Documents Department

A Tip Driven Fan Based on SERAPHIM Technology

Description: SERAPHIM technology appears capable of efficiently driving a tip driven fan. If the motor is powered using an inverter and resonant circuit, the size and weight could be considerably below that of a comparable rotary electric motor.
Date: January 1, 2002
Partner: UNT Libraries Government Documents Department

Photovoltaic Power Systems and the National Electrical Code: Suggested Practices

Description: This suggested practices manual examines the requirements of the National Electrical Code (NEC) as they apply to photovoltaic (PV) power systems. The design requirements for the balance of systems components in a PV system are addressed, including conductor selection and sizing, overcurrent protection ratings and location, and disconnect ratings and location. PV array, battery, charge controller, and inverter sizing and selection are not covered, as these items are the responsibility of the system designer, and they in turn determine the items in this manual. Stand-alone, hybrid, and utility-interactive PV systems are all covered.
Date: March 1, 2001
Creator: WILES, JOHN
Partner: UNT Libraries Government Documents Department

The Use of Thyristors for Repetitive Narrow Pulse, High Power Switching

Description: Inverter type thyristors were switched repetitively to failure with 1 {micro}s pulses at repetition rates of 10, 50 and 100 pps and at peak currents up to 12 kA. Millions of pulses could be obtained before failure if the peak current were held at around 6 kA.
Date: January 13, 2000
Partner: UNT Libraries Government Documents Department

Utility-scale grid-tied PV inverter reliability workshop summary report.

Description: A key to the long-term success of the photovoltaic (PV) industry is confidence in the reliability of PV systems. Inverters are the most commonly noted cause of PV system incidents triggered in the field. While not all of these incidents are reliability-related or even necessarily failures, they still result in a loss of generated power. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a Utility-Scale Grid-Tied Inverter Reliability Workshop in Albuquerque, New Mexico, January 27-28, 2011. The workshop addressed the reliability of large (100-kilowatt+) grid-tied inverters and the implications when such inverters fail, evaluated inverter codes and standards, and provided discussion about opportunities to enhance inverter reliability. This report summarizes discussions and presentations from the workshop and identifies opportunities for future efforts.
Date: July 1, 2011
Creator: Granata, Jennifer E.; Quintana, Michael A.; Tasca, Coryne Adelle (SRA International, Inc., Fairfax, VA) & Atcitty, Stanley
Partner: UNT Libraries Government Documents Department

Performance model for grid-connected photovoltaic inverters.

Description: This document provides an empirically based performance model for grid-connected photovoltaic inverters used for system performance (energy) modeling and for continuous monitoring of inverter performance during system operation. The versatility and accuracy of the model were validated for a variety of both residential and commercial size inverters. Default parameters for the model can be obtained from manufacturers specification sheets, and the accuracy of the model can be further refined using measurements from either well-instrumented field measurements in operational systems or using detailed measurements from a recognized testing laboratory. An initial database of inverter performance parameters was developed based on measurements conducted at Sandia National Laboratories and at laboratories supporting the solar programs of the California Energy Commission.
Date: September 1, 2007
Creator: Boyson, William Earl; Galbraith, Gary M.; King, David L. & Gonzalez, Sigifredo
Partner: UNT Libraries Government Documents Department

A delta configured auxiliary resonant snubber inverter

Description: A delta ({Delta}) configured auxiliary resonant snubber inverter is developed to overcome the voltage floating problem in a wye (Y) configured resonant snubber inverter. The proposed inverter is to connect auxiliary resonant branches between phase outputs to avoid a floating point voltage which may cause over-voltage failure of the auxiliary switches. Each auxiliary branch consists of a resonant inductor and a reverse blocking auxiliary switch. Instead of using an anti-paralleled diode to allow resonant current to flow in the reverse direction, as in the Y-configured version, the resonant branch in the {Delta}-configured version must block the negative voltage, typically done by a series diode. This paper shows single-phase and three-phase versions of {Delta}-configured resonant snubber inverters and describes in detail the operating principle of a single-phase version. The extended three-phase version is proposed with non-adjacent state space vector modulation. For hardware implementation, a single-phase 1-kW unit and a three-phase 100-kW unit were built to prove the concept. Experimental results show the superiority of the proposed topology.
Date: September 1, 1995
Creator: Lai, J.S.; Young, R.W.; Ott, G.W. Jr.; McKeever, J.W. & Peng, F.Z.
Partner: UNT Libraries Government Documents Department

Efficiency modeling and evaluation of a resonant snubber based soft- switching inverter for motor drive applications

Description: This paper establishes an analytical model for a resonant snubber based soft-switching inverter. The model adopts loss separation method to evaluate losses in individual components. Because of symmetry of the inverter circuit, the developed model is suitable for both single-phase and three-phase inverters. A single-phase inverter was built and tested with a single-phase induction motor driving a fan load to verify the developed model. The equivalent single-phase induction motor model was curve-fitted from experiment. Analytical results showed reasonable agreement with experiment. The same efficiency evaluation method was then applied to the conventional hard-switching inverter, and the results were compared with that of the soft-switching inverter. The resonant snubber base soft-switching inverter shows substantial efficiency improvement over the hard switching PWM (pulse-width-modulation) inverter, especially in low speed operation.
Date: December 31, 1995
Creator: Lai, J.S.; Young, R.W. & Ott, G.W.
Partner: UNT Libraries Government Documents Department

Cascade Multilevel Inverters for Utility Applications

Description: Cascade multilevel inverters have been developed by the authors for utility applications. A cascade M-level inverter consists of (M-1)/2 H- bridges in which each bridge has its own separate dc source. The new inverter: (1) can generate almost sinusoidal waveform voltage while only switching one time per fundamental cycle, (2) can eliminate transformers of multipulse inverters used in conventional utility interfaces and static var compensators, and (3) makes possible direct parallel or series connection to medium- and high-voltage power systems without any transformers. In other words, the cascade inverter is much more efficient and suitable for utility applications than traditional multipulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for reactive power (var) and harmonic compensation. This paper will summarize features,feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems.Analytical, simulated, and experimental results demonstrate the superiority of the new inverters.
Date: December 31, 1997
Creator: Peng, F.Z., McKeever, J.W., Adams, D.J.
Partner: UNT Libraries Government Documents Department

Multilevel DC Link Inverter for Brushless Permanent Magnet Motors with Very Low Inductance

Description: Due to their long effective air gaps, permanent magnet motors tend to have low inductance. The use of ironless stator structure in present high power PM motors (several tens of kWs) reduces the inductance even further (< 100 {micro}H). This low inductance imposes stringent current regulation demands for the inverter to obtain acceptable current ripple. An analysis of the current ripple for these low inductance brushless PM motors shows that a standard inverter with the most commonly used IGBT switching devices cannot meet the current regulation demands and will produce unacceptable current ripples due to the IGBT's limited switching frequency. This paper introduces a new multilevel dc link inverter, which can dramatically reduce the current ripple for brushless PM motor drives. The operating principle and design guidelines are included.
Date: October 29, 2001
Creator: Su, G. J.
Partner: UNT Libraries Government Documents Department

Resonant snubber based soft-switching inverters for electric propulsion drives

Description: This paper summarizes recently developed soft-switching inverters and proposes two alternative options for electric propulsion drives. The newly developed soft-switching inverter employs an auxiliary switch and a resonant inductor per phase to produce a zero voltage across the main switch so that the main switch can turn on at the zero-voltage condition. Both the auxiliary switch and the resonant inductor are operating at a fractional duty, and thus are small in size as compared to the main inverter circuit components. Operation modes in a complete zero-voltage switching cycle for the single-phase soft-switching inverter are described in detail with graphical explanations. The circuit operation was first verified by a computer simulation and then tested with an 1-kW single-phase and an 100-kW three-phase inverters. Experimental results are presented to show the superior performance in efficiency improvement, EMI reduction, and dv/dt reduction of the proposed soft-switching inverters.
Date: May 1, 1996
Creator: Lai, J.S.
Partner: UNT Libraries Government Documents Department

High-Speed, High-Resolution Analog Waveform Sampling in VLSI Technology

Description: Switched-capacitor analog memories are well-suited to a number of applications where a continuous digitization of analog signals is not needed. In data acquisition systems based on the use of an analog memory, the input waveforms are sampled and stored at a high rate for a limited period of time, and the analog samples are then retrieved at a lower rate and digitized with a slow ADC before new waveforms are acquired. The advantages of using an analog memory are lower overall power dissipation and cost, higher density and reliability, and potentially superior performance. The analog memory essentially exploits the fact that the sampling and storage of samples in a bank of analog memory cells can be accomplished at a higher rate and with a greater precision than direct digital conversion. This dissertation examines the important components of an analog memory in detail and investigates their use in a number of architectures. The research has led to the design of an analog memory that can acquire analog waveforms at sampling rates of several hundred MHz with a dynamic range and linearity of more than 12 bits, without the need for elaborate calibration and correction procedures. This is accomplished by means of a new memory architecture that results in memory cell pedestals and sampling times that are independent of the signal level, as well as cell gains that are insensitive to component sizes. The write address control for this memory has been realized with an inverter delay chain that provides substantially higher performance with respect to sampling rate and timing accuracy than other published approaches. Based upon the concepts developed in this work, an experimental analog memory was designed and integrated in a 2-{mu}m CMOS process. Extensive measurements of this prototype at sampling rates up to 700MHz are presented and demonstrate a ...
Date: October 13, 1998
Creator: Haller, Gunther
Partner: UNT Libraries Government Documents Department

SunSine300 AC module. Annual report, July 25, 1995--December 31, 1996

Description: Under Photovoltaic Manufacturing Technology (PVMaT) 4A1, Ascension Technology (AT) is developing the SunSine300 AC PV module. AT`s goals in this project are to meet Underwriters Laboratory (UL) 1741 requirements, obtain Federal Communications Commission (FCC) Class B verification, complete the AC module system design and development, advance the inverter design, design for manufacture, design for reliability, design for serviceability, and demonstrate commercialization through production and sale of about 100 units. To meet these goals, AT corrected a number of deficiencies identified by UL`s preliminary investigation before proceeding to the full UL investigation; a SunSine300 prototype was tested and found to comply with FCC Class B requirements; AT designed a complete line of balance-of-systems hardware for the SunSine 300; AT`s design and performance advancements include accomplishing a total harmonic distortion drop from 5% to 2%, devising a method to eliminate false detection of zero crossings that could damage the inverter, improving the anti-islanding with the addition of AT`s proprietary ZEBRA technique, and redesigning the enclosure for thermal performance, manufacturability, and UL and FCC approval; performing extensive testing in Phase 2 to discover failure modes and susceptibility to aging; and designing the SunSine300 to be easily and safely serviced. 3 figs., 3 tabs.
Date: August 1, 1997
Creator: Russell, M.C. & Handleman, C.K.P.
Partner: UNT Libraries Government Documents Department

CRADA Final Report for CRADA Number ORNL98-0521 : Development of an Electric Bus Inverter Based on ORNL Auxiliary Resonant Tank (ART) Soft-Switching Technology

Description: The Power Electronics and Electric Machinery Research Center (PEEMRC) of Oak Ridge National Laboratory (ORNL) has for many years been developing technologies for power converters for motor drives and many other applications. Some of the research goals are to improve efficiency and reduce audible and electromagnetic interference noise generation for inverters and the driven loads. The converters are being required to produce more power with reduced weight and volume, which requires improvements in heat removal from the electronics, as well as improved circuit designs that have fewer electrical losses. PEEMRC has recently developed and patented a soft-switching inverter topology called an Auxiliary Resonant Tank (ART), and this design has been tested and proven at ORNL using a 10-kW laboratory prototype. The objective of this project was to develop, test, and install the ART inverter technology in an electric transit bus with the final goal of evaluating performance of the ORNL inverter under field conditions in a vehicle. A scaled-up inverter with the capacity to drive a 22-e bus was built based on the 10-kW ORNL laboratory prototype ART soft-switching inverter. Most (if not all) commercially available inverters for traction drive and other applications use hard-switching inverters. A Cooperative Research and Development Agreement was established with the Chattanooga Area Regional Transit Authority (CARTA), the Electric Transit Vehicle Institute (ETVI), and Advanced Vehicle Systems (AVS), all of Chattanooga, along with ORNL. CARTA, which maintains and operates the public transit system in Chattanooga, provided an area for testing the vehicle alongside other similar vehicles in the normal operating environment. ETVI offers capabilities in standardized testing and reporting and also provides exposure in the electric transit vehicle arena for ORNL's technologies. The third Chattanooga partner, (AVS) manufactures all-electric and hybrid electric transit buses using inverter drive systems from several manufacturers. AVS provided help in ...
Date: May 8, 2001
Creator: Ayers, C.W.
Partner: UNT Libraries Government Documents Department


Description: This comprehensive topical report discusses the key findings in the development of a intelligent integrated blower for HVAC applications. The benefits of rearward inclined blades over that of traditional forward inclined blades is well documented and a prototype blower design is presented. A comparison of the proposed blower to that of three typical units from the industry is presented. The design of the blower housing is also addressed and the impact of size limitations on static efficiency is discussed. Issues of air flow controllability in the rearward inclined blower is addressed and a solution to this problem is proposed. Several motor design options are discussed including inside-out radial flux designs and novel axial flux designs, all are focused on the various blower needs. The control of the motor-blower and airflow through the use of a high density inverter stage and modern digital signal processor is presented. The key technical challenges of the approach are discussed. The use of the motor as a sensor in the larger heating/ventilating system is also discussed. Diagnostic results for both the motor itself and the blower system are presented.
Date: November 14, 2001
Creator: Wang, Shixiao; Wiegman, Herman; Wu, Wilson; Down, John; Iorio, Luana; Devarajan, Asha et al.
Partner: UNT Libraries Government Documents Department

Contol of Surface Mounted Permanent Magnet Motors with Special Application to Motors with Fractional-Slot Concentrated Windings

Description: A 30-pole, 6-kW prototype of a fractional-slot permanent magnet synchronous motor (PMSM) design has been developed to operate at a maximum speed of 6000 rpm [1,2]. This machine has significantly more inductance than regular PMSMs with distributed windings. The prototype was delivered in April 2006 to the Oak Ridge National Laboratory (ORNL) for testing and development of a suitable controller. To prepare for this test/control development effort, ORNL used PMSM models developed over a number of previous studies to preview the control issues that arise when a dynamic controller drives a high inductance PMSM machine during steady state performance evaluations. The detailed steady state model developed includes all motor and inverter loss mechanisms and was useful for assessing the performance of the dynamic controller before it was put into operation. This report documents the results of tests demonstrating the effectiveness of ORNL's simple low-cost control scheme during characterization of the fractional-slot concentrated windings (FSCW) PMSM motor. The control scheme is simple because only the supply voltage magnitude and the phase angle between the back-electromotive force (emf) and the supply voltage is controlled. It is low-cost because it requires no current or phase voltage sensors.
Date: July 31, 2007
Creator: Patil, N.; Lawler, J.S. & McKeever, J.
Partner: UNT Libraries Government Documents Department

A Five-Level Cascade Multilever Invertor Three-Phase Motor Drive Using a Single DC Source

Description: A method is presented showing that a 5-level cascade multilevel inverter for a three-phase permanent magnet synchronous motor drive can be implemented using only a single DC link to supply a standard 3-leg inverter along with three full H-bridges supplied by capacitors. It is shown that the capacitor voltages can be regulated while achieving an output voltage waveform that is 20% greater than that obtained using the standard 3-leg inverter alone. Finally conditions are given in terms of the power factor and modulation index that determine when the capacitor voltage can regulated.
Date: September 15, 2006
Creator: Chiasson, J.N. (Univ. Tennessee-Knoxville)
Partner: UNT Libraries Government Documents Department

Test report on the Abacus 30 kW bimode{reg_sign} inverter and maximum power tracker (MPT)

Description: Sandia National Laboratories conducts the photovoltaic balance of systems (BOS) program, which is sponsored by the US Department of Energy`s Office of Energy Management. Under this program, SNL lets commercialization contracts and conducts a laboratory program designed to advance BOS technology, improve BOS component reliability, and reduce the BOS life-cycle-cost. This report details the testing of the first large US manufactured hybrid inverter and its associated maximum power tracker.
Date: June 1, 1995
Creator: Bonn, R.; Ginn, J. & Zirzow, J.
Partner: UNT Libraries Government Documents Department

Results of Sandia National Laboratories grid-tied inverter testing

Description: This paper proposes a definition for a Non-Islanding Inverter. This paper also presents methods that can be used to implement such an inverter, along with references to prior work on the subject. Justification for the definition is provided on both a theoretical basis and results from tests conducted at Sandia National Laboratories and Ascension Technology, Inc.
Date: July 1, 1998
Creator: Kern, G.A.; Bonn, R.H.; Ginn, J. & Gonzalez, S.
Partner: UNT Libraries Government Documents Department

Sandia Smart Anti-Islanding Project; Summer 2001: Task II Investigation of the Impact of Single-Phase Induction Machines in Islanded Loads: Summary of Results

Description: Islanding, the supply of energy to a disconnected portion of the grid, is a phenomenon that could result in personnel hazard, interfere with reclosure, or damage hardware. Considerable effort has been expended on the development of IEEE 929, a document that defines unacceptable islanding and a method for evaluating energy sources. The worst expected loads for an islanded inverter are defined in IEEE 929 as being composed of passive resistance, inductance, and capacitance. However, a controversy continues concerning the possibility that a capacitively compensated, single-phase induction motor with a very lightly damped mechanical load having a large rotational inertia would be a significantly more difficult load to shed during an island. This report documents the result of a study that shows such a motor is not a more severe case, simply a special case of the RLC network.
Date: May 1, 2002
Partner: UNT Libraries Government Documents Department

Status and Needs of Power Electronics for Photovoltaic Inverters

Description: Photovoltaics is the utility connected distributed energy resource (DER) that is in widespread use today. It has one element, the inverter, which is common with all DER sources except rotating generators. The inverter is required to transfer dc energy to ac energy. With all the DER technologies, (solar, wind, fuel cells, and microturbines) the inverter is still an immature product that will result in reliability problems in fielded systems. Today, the PV inverter is a costly and complex component of PV systems that produce ac power. Inverter MTFF (mean time to first failure) is currently unacceptable. Low inverter reliability contributes to unreliable fielded systems and a loss of confidence in renewable technology. The low volume of PV inverters produced restricts the manufacturing to small suppliers without sophisticated research and reliability programs or manufacturing methods. Thus, the present approach to PV inverter supply has low probability of meeting DOE reliability goals. DOE investments in power electronics are intended to address the reliability and cost of power electronics. This report details the progress of power electronics, identifies technologies that are in current use, and explores new approaches that can provide significant improvements in inverter reliability while leading to lower cost. A key element to improved inverter design is the systems approach to design. This approach includes a list of requirements for the product being designed and a preliminary requirements document is a part of this report. Finally, the design will be for a universal inverter that can be applied to several technologies. The objective of a universal inverter is to increase the quantity being manufactured so that mass-manufacturing techniques can be applied. The report includes the requirements and recommended design approaches for a new inverter with a ten-year mean time to first failure (MTFF) and with lower cost. This development will constitute ...
Date: June 1, 2002
Partner: UNT Libraries Government Documents Department

Status and Needs of Power Electronics for Photovoltaic Inverters: Summary Document

Description: Photovoltaic inverters are the most mature of any DER inverter, and their mean time to first failure (MTFF) is about five years. This is an unacceptable MTFF and will inhibit the rapid expansion of PV. With all DER technologies, (solar, wind, fuel cells, and microturbines) the inverter is still an immature product that will result in reliability problems in fielded systems. The increasing need for all of these technologies to have a reliable inverter provides a unique opportunity to address these needs with focused R&D development projects. The requirements for these inverters are so similar that modular designs with universal features are obviously the best solution for a ''next generation'' inverter. A ''next generation'' inverter will have improved performance, higher reliability, and improved profitability. Sandia National Laboratories has estimated that the development of a ''next generation'' inverter could require approximately 20 man-years of work over an 18- to 24-month time frame, and that a government-industry partnership will greatly improve the chances of success.
Date: April 1, 2002
Partner: UNT Libraries Government Documents Department

A DSP based power electronics interface for alternate/renewable energy systems. Quarterly report 3.

Description: This report is an update on the research project involving the implementation of a DSP based power electronics interface for alternate/renewable energy systems that was funded by the Department of Energy under the Inventions and Innovations program 1998. The objective of this research is to develop a utility interface (dc to ac converter) suitable to interconnect alternate/renewable energy sources to the utility system. The DSP based power electronics interface in comparison with existing methods will excel in terms of efficiency, reliability and cost. Moreover DSP-based control provides the flexibility to upgrade/modify control algorithms to meet specific system requirements. The proposed interface will be capable of maintaining stiffness of the ac voltages at the point of common coupling regardless of variation in the input dc bus voltage. This will be achieved without the addition of any extra components to the basic interface topology but by inherently controlling the inverter switching strategy in accordance to the input voltage variation.
Date: March 31, 2000
Partner: UNT Libraries Government Documents Department