9 Matching Results

Search Results

Advanced search parameters have been applied.

Observations of magnetospheric substorms occurring with no apparent solar wind/IMF trigger

Description: An outstanding topic in magnetospheric physics is whether substorms are always externally triggered by disturbances in either the interplanetary magnetic field or solar wind, or whether they can also occur solely as the result of an internal magnetospheric instability. Over the past decade, arguments have been made on both sides of this issue. Horwitz and McPherron have shown examples of substorm onsets which they claimed were not externally triggered. However, as pointed out by Lyons, there are several problems associated with these studies that make their results somewhat inconclusive. In particular, in the McPherron et al. study, fluctuations in the B{sub y} component were not considered as possible triggers. Furthermore, Lyons suggests that the sharp decreases in the AL index during intervals of steady IMF/solar wind, are not substorms at all but rather that they are just enhancements of the convection driven DP2 current system that are often observed to occur during steady magnetospheric convection events. In the present study, we utilize a much more comprehensive dataset (consisting of particle data from the Los Alamos energetic particle detectors at geosynchronous orbit, IMP 8 magnetometer and plasma data, Viking UV auroral imager data, mid-latitude Pi2 pulsation data, ground magnetometer data and ISEE1 magnetic field and energetic particle data) to show as unambiguously as possible that typical substorms can indeed occur in the absence of an identifiable trigger in the solar wind/IMF.
Date: March 1, 1996
Creator: Henderson, M.G.; Reeves, G.D.; Belian, R.D. & Murphree, J.S.
Partner: UNT Libraries Government Documents Department

Magnetic energy storage and the nightside magnetosphere-ionosphere coupling

Description: The change m in the magnetic energy stored m in the Earth`s magnetotail as a function of the solar wind, BIF conditions are investigated using an empirical magnetic field model. The results are used to calculate the two normal modes contained m in the low-dimensional global model called WINDMI for the solar wind driven magnetosphere-ionosphere system. The coupling of the magnetosphere-ionosphere (MI) through the nightside region 1 current loop transfers power to the ionosphere through two modes: a fast (period of minutes) oscillation and a slow (period of one hour) geotail cavity mode. The solar wind drives both modes m in the substorm dynamics.
Date: May 1, 1998
Creator: Horton, W.; Pekker, M. & Doxas, I.
Partner: UNT Libraries Government Documents Department

Kinetic Alfven waves and plasma transport at the magnetopause

Description: Large amplitude compressional type waves, with frequencies ranging from 10--500 mHz, are nearly always found in the magnetosheath near the magnetopause where there are large gradients in density, pressure and magnetic field. As compressional waves propagation to the magnetopause, there gradients efficiently couple them with shear/kinetic Alfven waves near the Alfven field-line resonance location ({omega} = k{sub {parallel}} v{sub A}). The authors present a solution of the kinetic-MHD wave equations for this process using a realistic equilibrium profile including full ion Larmor radius effects and wave-particle resonance interactions for electrons and ions to model the dissipation. For northward IMF a KAW propagates backward to the magnetosheath. For southward IMF the wave remains in the magnetopause but can propagate through the k{sub {parallel}} = 0 location. The quasi-linear theory predicts that KAWs produce plasma transport with a diffusion coefficient D{sub {perpendicular}} {approximately} 10{sup 9} m{sup 2}/s and plasma convection on the order of 1 km/s. However, for southward IMF additional transport can occur because magnetic islands form at the k{sub {parallel}} = 0 location. Due to the broadband nature of the observed waves these islands can overlap leading to stochastic transport which is much larger than that due to quasilinear effects.
Date: May 1, 1997
Creator: Johnson, J.R. & Cheng, C.Z.
Partner: UNT Libraries Government Documents Department

Global structure of mirror modes in the magnetosheath

Description: A global stability analysis of mirror modes in the magnetosheath is presented. The analysis is based upon the kinetic-MHD formulation which includes relevant kinetic effects such as Landau resonance and gradient drift effects related to inhomogeneities in the background density, temperature, pressure and its anisotropy, magnetic field, and plasma flow velocity. Pressure anisotropy provides the free energy for the global mirror mode. The local theory of mirror modes predicts purely growing modes confined in the unstable magnetosheath region; however, the nonlocal theory that includes the effects of gradients and plasma flow predicts modes with real frequencies which propagate with the flow from the magnetosheath toward the magnetopause boundary. The real frequency is on the order of a combination of the diamagnetic drift frequency and the Doppler shift frequency associated with plasma flow. The diamagnetic drift frequency provides a wave phase velocity in the direction of the magnetopause so that wave energy accumulates against the magnetopause boundary, and the amplitude is skewed in that direction. On the other hand, plasma flow also gives rise to a real phase velocity, but the phase velocity is smaller than the flow velocity. As a result, the wave amplitude is increased in the wake of the plasma flow and piles up against the bow shock boundary.
Date: November 1, 1996
Creator: Johnson, J.R. & Cheng, C.Z.
Partner: UNT Libraries Government Documents Department

Structure and evolution of the current sheet by multi-spacecraft observations

Description: On April 22, 1979, from 0840 to 1018 UT, ISEE 1, ISEE 2 and IMP 8 were all in or near the magnetotail current sheet at 17 Re, 16 Re and 35 Re respectively while ISEE 3 monitored the solar wind 206 Re upstream of the Earth. A global perspective of the four spacecraft observations and of the ground magnetic records is presented in this paper. The hyperbolic tangent current sheet model of Harris has been used to calculate the current sheet thickness and to analyze the plasma distribution in the vertical direction. It is found that during this event the current sheet thickness varied from 2.5 Re to 1.5 Re for northward IMF but thinned abruptly to 0.5 Re when the IMF turned southward.
Date: December 31, 1997
Creator: Zhou, X.Y.; Russell, C.T. & Gosling, J.
Partner: UNT Libraries Government Documents Department

Cosmic ray sun shadow in Soudan 2 underground muon flux.

Description: The absorption of cosmic rays by the sun produces a shadow at the earth. The angular offset and broadening of the shadow are determined by the magnitude and structure of the interplanetary magnetic field (IPMF) in the inner solar system. The authors report the first measurement of the solar cosmic ray shadow by detection of deep underground muon flux in observations made during the entire ten-year interval 1989 to 1998. The sun shadow varies significantly during this time, with a 3.3{sigma} shadow observed during the years 1995 to 1998.
Date: June 23, 1999
Creator: Allison, W. W. M.; Alner, G. J.; Ayres, D. S.; Barrett, W. L.; Bode, C.; Fields, T. H. et al.
Partner: UNT Libraries Government Documents Department

New insights on geomagnetic storms from observations and modeling

Description: Understanding the response at Earth of the Sun's varying energy output and forecasting geomagnetic activity is of central interest to space science, since intense geomagnetic storms may cause severe damages on technological systems and affect communications. Episodes of southward (Bz<O) interplanetary magnetic field (IMF) which lead to disturbed geomagnetic conditions are associated either with coronal mass ejections (CMEs) and possess long and continuous negative IMF Bz excursions, or with high speed solar wind streams (HSS) whose geoeffectiveness is due to IMF Bz profiles fluctuating about zero with various amplitudes and duration. We show examples of ring current simulations during two geomagnetic storms representative of each interplanetary condition with our kinetic ring current atmosphere interactions model (RAM), and investigate the mechanisms responsible for trapping particles and for causing their loss. We find that periods of increased magnetospheric convection coinciding with enhancements of plasma sheet density are needed for strong ring current buildup. During the HSS-driven storm the convection potential is highly variable and causes small sporadic injections into the ring current. The long period of enhanced convection during the CME-driven storm causes a continuous ring current injection penetrating to lower L shells and stronger ring current buildup.
Date: January 1, 2009
Creator: Jordanova, Vania K
Partner: UNT Libraries Government Documents Department

Contributions from the CYGNUS/Milagro Collaboration

Description: This document consists of eleven reports contributed to the XXIV International Cosmic Ray Conference (Rome, Italy, August 28--September 8, 1995) from the CYGNUS/Milagro Collaboration: ``Search for Ultra-High-Energy Radiation from Gamma-Ray Bursts``, ``Gamma-Ray Bursts: Detection and Distance Estimates with Milagro``, ``Searching for Gamma-Ray Bursts with Water-Cerenkov-Detector Single-Particle Rates``, ``The Milagro Detector``, ``The Milagro Data Acquisition System``, ``Source Searches Using the CYGNUS Water-Cerenkov Array``, ``Search for UHE Emission from Supernova Remnants``, ``Solar Physics with the Milagro Telescope``, ``An Experiment to Detect Correlations Between Cerenkov and Muon Lateral Distributions in EAS``, ``A Study of Large-Zenith-Angle Air Showers with the CYGNUS Experiment``, and ``Mass Resolution of Ground Based Air Shower Experiments in the 10 to 10000 TeV range.``
Date: September 1, 1995
Creator: Allen, G.E.; Chang, C.Y. & Chen, M.L.
Partner: UNT Libraries Government Documents Department

Observation in the MINOS far detector of the shadowing of cosmic rays by the sun and moon

Description: The shadowing of cosmic ray primaries by the the moon and sun was observed by the MINOS far detector at a depth of 2070 mwe using 83.54 million cosmic ray muons accumulated over 1857.91 live-days. The shadow of the moon was detected at the 5.6 {sigma} level and the shadow of the sun at the 3.8 {sigma} level using a log-likelihood search in celestial coordinates. The moon shadow was used to quantify the absolute astrophysical pointing of the detector to be 0.17 {+-} 0.12{sup o}. Hints of Interplanetary Magnetic Field effects were observed in both the sun and moon shadow.
Date: August 1, 2010
Creator: Adamson, P.; /Fermilab; Andreopoulos, C.; U., /Rutherford /Athens; Ayres, D.S.; /Argonne et al.
Partner: UNT Libraries Government Documents Department