8 Matching Results

Search Results

Advanced search parameters have been applied.

IP address management : augmenting Sandia's capabilities through open source tools.

Description: Internet Protocol (IP) address management is an increasingly growing concern at Sandia National Laboratories (SNL) and the networking community as a whole. The current state of the available IP addresses indicates that they are nearly exhausted. Currently SNL doesn't have the justification to obtain more IP address space from Internet Assigned Numbers Authority (IANA). There must exist a local entity to manage and allocate IP assignments efficiently. Ongoing efforts at Sandia have been in the form of a multifunctional database application notably known as Network Information System (NWIS). NWIS is a database responsible for a multitude of network administrative services including IP address management. This study will explore the feasibility of augmenting NWIS's IP management capabilities utilizing open source tools. Modifications of existing capabilities to better allocate available IP address space are studied.
Date: August 1, 2005
Creator: Nayar, R. Daniel
Partner: UNT Libraries Government Documents Department

Intrusion detection and monitoring for wireless networks.

Description: Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wireless networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more complete network coverage for use by emergency responders and other municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is ...
Date: November 1, 2005
Creator: Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.; Stephano, Amanda (Indiana University); Tabriz, Parisa (University of Illinois at Urbana-Champaign); Pelon, Kristen (Cedarville University) et al.
Partner: UNT Libraries Government Documents Department

IP storage : a performance and security study, LDRD 04-1021.

Description: Effective, high-performance, networked file systems and storage is needed to solve I/O bottlenecks between large compute platforms. Frequently, parallel techniques such as PFTP, are employed to overcome the adverse effect of TCP's congestion avoidance algorithm in order to achieve reasonable aggregate throughput. These techniques can suffer from end-system bottlenecks due to the protocol processing overhead and memory copies involved in moving large amounts of data during I/O. Moreover, transferring data using PFTP requires manual operation, lacking the transparency to allow for interactive visualization and computational steering of large-scale simulations from distributed locations. This paper evaluates the emerging Internet SCSI (iSCSI) protocol [2] as the file/data transport in order that remote clients can transparently access data through a distributed global file system available to local clients. We started our work characterizing the performance behavior of iSCSI in Local Area Networks (LANs). We then proceeded to study the effect of propagation delay on throughput using remote iSCSI storage and explored optimization techniques to mitigate the adverse effects of long delay in high-bandwidth Wide Area Networks (WANs). Lastly, we evaluated iSCSI in a Storage Area Network (SAN) for a Global Parallel Filesystem. We conducted our benchmark based on typical usage model of large-scale scientific applications at Sandia. We demonstrated the benefit of high-performance parallel VO to scientific applications at the IEEE 2004 Supercomputing Conference, using experiences and knowledge gained from this study.
Date: February 1, 2005
Creator: Van Randwyk, Jamie A.; Bierbaum, Neal Robert; Chen, Helen Y. & Bielecki, Frank T.
Partner: UNT Libraries Government Documents Department

Analysis of multichannel internet communication.

Description: A novel method employing machine-based learning to identify messages related to other messages is described and evaluated. This technique may enable an analyst to identify and correlate a small number of related messages from a large sample of individual messages. The classic machine learning techniques of decision trees and naive Bayes classification are seeded with few (or no) messages of interest and 'learn' to identify other related messages. The performance of this approach and these specific learning techniques are evaluated and generalized.
Date: October 1, 2004
Creator: Nove, Charles E.; Maclin, Richard Frank; Theuninck, Andrew K. (University of Minnesota-Duluth, Duluth, MN); Newland, Jeremy L. (University of Minnesota-Duluth, Duluth, MN); Torrey, Lisa A. (University of Wisconsin-Madison, Madison, WI) & Robinson, Eric R. (University of Wisconsin-Madison, Madison, WI)
Partner: UNT Libraries Government Documents Department

A report on IPv6 deployment activities and issues at Sandia National Laboratories:FY2007.

Description: Internet Protocol version 4 (IPv4) has been a mainstay of the both the Internet and corporate networks for delivering network packets to the desired destination. However, rapid proliferation of network appliances, evolution of corporate networks, and the expanding Internet has begun to stress the limitations of the protocol. Internet Protocol version 6 (IPv6) is the replacement protocol that overcomes the constraints of IPv4. As the emerging Internet network protocol, SNL needs to prepare for its eventual deployment in international, national, customer, and local networks. Additionally, the United States Office of Management and Budget has mandated that IPv6 deployment in government network backbones occurs by 2008. This paper explores the readiness of the Sandia National Laboratories network backbone to support IPv6, the issues that must be addressed before a deployment begins, and recommends the next steps to take to comply with government mandates. The paper describes a joint work effort of the Sandia National Laboratories ASC WAN project team and members of the System Analysis & Trouble Resolution, the Communication & Network Systems, and Network System Design & Implementation Departments.
Date: June 1, 2007
Creator: Tolendino, Lawrence F.; Eldridge, John M.; Hu, Tan Chang & Maestas, Joseph H.
Partner: UNT Libraries Government Documents Department

A report on FY06 IPv6 deployment activities and issues at Sandia National Laboratories.

Description: Internet Protocol version 4 (IPv4) has been a mainstay of the both the Internet and corporate networks for delivering network packets to the desired destination. However, rapid proliferation of network appliances, evolution of corporate networks, and the expanding Internet has begun to stress the limitations of the protocol. Internet Protocol version 6 (IPv6) is the replacement protocol that overcomes the constraints of IPv4. IPv6 deployment in government network backbones has been mandated to occur by 2008. This paper explores the readiness of the Sandia National Laboratories' network backbone to support IPv6, the issues that must be addressed before a deployment begins, and recommends the next steps to take to comply with government mandates. The paper describes a joint, work effort of the Sandia National Laboratories ASC WAN project team and members of the System Analysis & Trouble Resolution and Network System Design & Implementation Departments.
Date: June 1, 2006
Creator: Tolendino, Lawrence F.; Eldridge, John M. & Hu, Tan Chang
Partner: UNT Libraries Government Documents Department

Network protocol changes can improve DisCom WAN performance : evaluating TCP modifications and SCTP in the ASC tri-lab environment.

Description: The Advanced Simulation and Computing (ASC) Distance Computing (DisCom) Wide Area Network (WAN) is a high performance, long distance network environment that is based on the ubiquitous TCP/IP protocol set. However, the Transmission Control Protocol (TCP) and the algorithms that govern its operation were defined almost two decades ago for a network environment vastly different from the DisCom WAN. In this paper we explore and evaluate possible modifications to TCP that purport to improve TCP performance in environments like the DisCom WAN. We also examine a much newer protocol, SCTP (Stream Control Transmission Protocol) that claims to provide reliable network transport while also implementing multi-streaming, multi-homing capabilities that are appealing in the DisCom high performance network environment. We provide performance comparisons and recommendations for continued development that will lead to network communications protocol implementations capable of supporting the coming ASC Petaflop computing environments.
Date: June 1, 2005
Creator: Tolendino, Lawrence F. & Hu, Tan Chang
Partner: UNT Libraries Government Documents Department

Metaphors for cyber security.

Description: This report is based upon a workshop, called 'CyberFest', held at Sandia National Laboratories on May 27-30, 2008. Participants in the workshop came from organizations both outside and inside Sandia. The premise of the workshop was that thinking about cyber security from a metaphorical perspective could lead to a deeper understanding of current approaches to cyber defense and perhaps to some creative new approaches. A wide range of metaphors was considered, including those relating to: military and other types of conflict, biological, health care, markets, three-dimensional space, and physical asset protection. These in turn led to consideration of a variety of possible approaches for improving cyber security in the future. From the proposed approaches, three were formulated for further discussion. These approaches were labeled 'Heterogeneity' (drawing primarily on the metaphor of biological diversity), 'Motivating Secure Behavior' (taking a market perspective on the adoption of cyber security measures) and 'Cyber Wellness' (exploring analogies with efforts to improve individual and public health).
Date: August 1, 2008
Creator: Moore, Judy Hennessey; Parrott, Lori K. & Karas, Thomas H.
Partner: UNT Libraries Government Documents Department