374 Matching Results

Search Results

Advanced search parameters have been applied.

Materials analysis of deposits made by the directed-light fabrication process

Description: This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The directed-light fabrication (DLF) process is a unique method of forming three-dimensional objects by fusing airborne powders in the focus of a laser beam. This process bypasses conventional ingot processing steps of casting, homogenization, extrusion, forging, and possibly some or all of the required machining. It provides a new ``near-net-shape`` fabrication technology for difficult-to-fabricate materials such as refractory metals, metal composites, intermetallics, ceramics, and possibly superconductors. This project addresses the solidification behavior during DLF processing to characterize the technique in terms of solid/liquid interface characteristics, cooling rates, and growth rates. Materials studied were Ag-Cu, Fe-Ni, 316SS, and Al-Cu.
Date: July 1, 1996
Creator: Lewis, G.; Nemec, R. & Thoma, D.
Partner: UNT Libraries Government Documents Department

Processing and properties of FeAl-bonded composites

Description: Iron aluminides are thermodynamically compatible with a wide range of ceramics such as carbides, borides, oxides, and nitrides, which makes them suitable as the matrix in composites or cermets containing fine ceramic particulates. For ceramic contents varying from 30 to 60 vol.%, composites of Fe-40 at. % Al with WC, TiC, TiB{sub 2}, and ZrB{sub 2} were fabricated by conventional liquid phase sintering of powder mixtures. For ceramic contents from 70 to 85 vol.%, pressureless melt infiltration was found to be a more suitable processing technique. In FeAl-60 vol.% WC, flexure strengths of up to 1.8 GPa were obtained, even though processing defects consisting of small oxide clusters were present. Room temperature fracture toughnesses were determined by flexure testing of chevron-notched specimens. FeAl/WC and FeAl/TiC composites containing 60 vol.% carbide particles exhibited K{sub Q} values around 20 MPa m{sup 1/2}. Slow crack growth measurements carried out in water and in dry oxygen suggest a relatively small influence of water-vapor embrittlement. It appears therefore that the mechanical properties of iron aluminides in the form of fine ligaments are quite different from their bulk properties. Measurements of the oxidation resistance, dry wear resistance, and thermal expansion of iron aluminide composites suggest many potential applications for these new materials.
Date: December 31, 1996
Creator: Schneibel, J.H.; Subramanian, R.; Alexander, K.B. & Becher, P.F.
Partner: UNT Libraries Government Documents Department

Fabric cutting application of FeAl-based alloys

Description: Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60), and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel.
Date: November 1, 1998
Creator: Sikka, V.K.; Blue, C.A.; Sklad, S.P.; Deevi, S.C. & Shih, H.R.
Partner: UNT Libraries Government Documents Department

The role of ALCHEMI in understanding the properties of ordered intermetallic alloys

Description: After one and one-half decades of development, ALCHEMI is approaching the status of an established analytical technique. Many of the problems that have plagued ALCHEMI, especially for the analysis of ordered intermetallic alloys, are now well understood, and accurate site-distributions can be extracted from a variety of intermetallic alloys. This paper begins with an overview of the factors that can lead to large systematic errors or gross misinterpretations of ALCHEMI data, with illustrations from a variety of ordered intermetallic alloys. The paper concludes with a discussion of ALCHEMI in the broader context of understanding the properties of ordered intermetallic alloys. The results of systematic studies are used to illustrate the role of ALCHEMI in determining the competing effects of thermodynamic and kinetic factors during alloy processing and the correlation of alloy properties with the atomic site distributions on which the properties ultimately depend.
Date: November 1, 1998
Creator: Anderson, I.M.
Partner: UNT Libraries Government Documents Department

The interplay of long-range magnetic order and single-ion anisotropy in rare earth nickel germanides

Description: This dissertation is concerned with the interplay of long-range order and anisotropy in the tetragonal RNi{sub 2}Ge{sub 2} (R = rare earth) family of compounds. Microscopic magnetic structures were studied using both neutron and x-ray resonant exchange scattering (XRES) techniques. The magnetic structures of Tb, Dy, Eu and Gd members have been determined using high-quality single-crystal samples. This work has correlated a strong Fermi surface nesting to the magnetic ordering in the RNi{sub 2}Ge{sub 2} compounds. Generalized susceptibility, {chi}{sub 0}(q), calculations found nesting to be responsible for both incommensurate ordering wave vector in GdNi{sub 2}Ge{sub 2}, and the commensurate structure in EuNi{sub 2}Ge{sub 2}. A continuous transition from incommensurate to commensurate magnetic structures via band filling is predicted. The surprisingly higher T{sub N} in EuNi{sub 2}Ge{sub 2} than that in GdNi{sub 2}Ge{sub 2} is also explained. Next, all the metamagnetic phases in TbNi{sub 2}Ge{sub 2} with an applied field along the c axis have been characterized with neutron diffraction measurements. A mixed phase model for the first metamagnetic structure consisting of fully-saturated as well as reduced-moment Tb ions is presented. The moment reduction may be due to moment instability which is possible if the exchange is comparable to the low-lying CEF level splitting and the ground state is a singlet. In such a case, certain Tb sites may experience a local field below the critical value needed to reach saturation.
Date: May 10, 1999
Creator: Islam, Z.
Partner: UNT Libraries Government Documents Department

Reduction in Defect Content of ODS Alloys

Description: The work detailed within this report is a continuation of earlier work carried out under contract number 1DX-SY382V. The earlier work comprises a literature review of the sources and types of defects found principally in Fe-based ODS alloys as well as experimental work designed to identify defects in the prototype ODS-Fe{sub 3}Al alloy, deduce their origins and to recommend methods of defect reduction. The present work is an extension of the experimental work already reported and concentrates on means of reduction of defects already identified rather than the search for new defect types. This report also includes results gathered during powder separation trials, conducted by the University of Groningen, Netherlands and coordinated by the University of Liverpool, involving the separation of different metallic powders in terms of their differing densities. The scope and objectives of the present work were laid out in the technical proposal ''Reduction in Defect Content in ODS Alloys-III''. All the work proposed in the ''Statement of Work'' section of the technical proposal has been carried out and all work extra to the ''Statement of Work'' falls within the context of an ODS-Fe{sub 3}Al alloy of improved overall quality and potential creep performance in the consolidated form. The outturn of the experimental work performed is reported in the following sections.
Date: May 15, 2001
Creator: Ritherdon, J.
Partner: UNT Libraries Government Documents Department

Shock compression of quartz and aluminum powder mixtures

Description: The authors report about the shock-compression response of highly porous (55% and 65% dense) mixtures of 4Al + 3SiO{sub 2} powders having shock-induced phase transitions and chemical reactions. Shock recovery experiments were performed using the CETR/Sawaoka plate-impact system (P = 40 to 100 GPa) and the Sandia Momma Bear A Comp B fixture (P = 22 to 45 GPa). The recovered compacts contained the high pressure stishovite phase, products of chemical reaction, as well as unreacted constituents. The reaction products formed included Al{sub 2}O{sub 3} metallic Si (ambient and high pressure phases), SiAl intermetallic, and kyanite (Al{sub 2}SiO{sub 5}). The shock-induced chemical reaction in 4Al + 3SiO{sub 2} powder mixtures, appears to have been accompanied (or assisted) by the formation of stishovite, a high pressure phase of quartz.
Date: November 1, 1995
Creator: Joshi, V.S.; Thadhani, N.N.; Graham, R.A. & Holman, G.T. Jr.
Partner: UNT Libraries Government Documents Department

Crystal field and exchange interactions in DyT{sub 4}Al{sub 8} (T = Fe and Mn)

Description: The authors investigated the magnetic excitations in polycrystalline samples of hard magnet related compounds DyFe{sub 4}Al{sub 8} and DyMn{sub 4}Al{sub 8} by neutron spectroscopy. For both compounds the magnetic spectra at energies below 40 meV are dominated by the response of the Dy{sup 3+} ions. In DyMn{sub 4}Al{sub 8} they observed pure crystal-field transitions within the Dy{sup 3+} J = 15/2 ground multiplet ID which is split into 8 doublets under the low point-group symmetry of 4/mmm. In DyFe{sub 4}Al{sub 8} the Dy crystal-field-split states are perturbed by the molecular fields of the ordered Fe sublattice.
Date: December 31, 1994
Creator: Loewenhaupt, M.; Tils, P.; Hahn, W. & Loong, C.K.
Partner: UNT Libraries Government Documents Department

The effect of microstructure and temperature on the oxidation behavior of two-phase Cr-Cr{sub 2}X (X = Nb, Ta) alloys

Description: The oxidation behavior of Cr(X) solid solution (Cr{sub ss}) and Cr{sub 2}X Laves phases (X = Nb, Ta) was studied individually and in combination at 950--1,100 C in air. The Cr{sub ss} phase was significantly more oxidation resistant than the Cr{sub 2}X Laves phase. At 950 C, two-phase alloys of Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Ta exhibited in-situ internal oxidation, in which remnants of the Cr{sub 2}X Laves phase were incorporated into a growing chromia scale. At 1,100 C, the Cr-Cr{sub 2}Nb alloys continued to exhibit in-situ internal oxidation, which resulted in extensive O/N penetration into the alloy ahead of the alloy-scale interface and catastrophic failure during cyclic oxidation. IN contrast, the Cr-Cr{sub 2}Ta alloys exhibited a transition to selective Cr oxidation and the formation of a continuous chromia scale. The oxidation mechanism is interpreted in terms of multiphase oxidation theory.
Date: November 1, 1998
Creator: Brady, M.P. & Tortorelli, P.F.
Partner: UNT Libraries Government Documents Department

Heavy vehicle propulsion system materials program: Semiannual progress report, April 1996--September 1996

Description: The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. Separate abstracts have been submitted to the database for contributions to this report.
Date: April 1, 1997
Creator: Johnson, D.R.
Partner: UNT Libraries Government Documents Department

Comprehensive research on the stability and electronic properties of a-Si:H and a-SiGe:H alloys and devices. Final subcontract report, 10 March 1991--30 August 1994

Description: This report describes work on the growth of a-Si:H and a-(Si,Ge):H materials and devices using well-controlled growth techniques. The a-Si:H materials were grown at higher temperatures (300{degrees}-375{degrees}C) using electron-cyclotron-resonance (ECR) plasma techniques with a remote H beam. These films have excellent electronic quality and show significant improvements in stability compared with glow-discharge-produced a-Si:H materials. Several problems were encountered during the fabrication of devices in these materials, and we were able to overcome them by a systematic work on buffer layers in these cells. We also studied alternative designs for improving the stability of a-Si:H cells and produced graded-gap a-Si:H cells using glow-discharge that are more stable than comparable standard, ungraded glow discharge devices. Finally, systematic work was done to produce good-quality a-(Si,Ge):H films, using triode radio frequency (RF) glow-discharge with ion bombardment during growth. Diagnostic devices were made using these films, and the properties of the material, such as Urbach energies and hole mobility-lifetime products, were measured in these devices. We found a systematic increase in the Urbach energies, and a corresponding decrease in the hole and electron {mu}{tau} products, as the Ge content of the alloys increases.
Date: April 1, 1995
Creator: Dalal, V.
Partner: UNT Libraries Government Documents Department

The hot workability and superplasticity of Ti-48Al-2Nb-2Cr alloys

Description: The hot compression behavior and microstructure evolution of ingot metallurgy (I/M) and powder metallurgy (P/M) processed samples of the near-{gamma} Ti-aluminide alloy, Ti-48Al-2Nb-2Cr (at%), were determined. Three I/M conditions and two P/M conditions were examined in this study. Hot compression tests were performed in the temperature range 1,100--1,300 C at strain rates ranging from 1.67 {times} 10{sup {minus}1}/sec to 1.67 {times} 10{sup {minus}4}/sec. P/M materials consolidated by either hot isostatic pressing (HIP`ing) or extrusion exhibited the best hot workability in most cases. The P/M materials possessed finer, more homogeneous microstructures than the I/M materials. It was also noted that improved workability, and in some cases superplastic behavior, was observed in the materials with equiaxed microstructures without any lamellar constituents.
Date: February 1, 1998
Creator: Fuchs, G.E.
Partner: UNT Libraries Government Documents Department

Site occupancies in ternary C15 ordered Laves phases

Description: Site occupancies in three C15-structured AB{sub 2}(X) Laves phases have been determined by Atom Location by CHanneling Enhanced MIcroanalysis (ALCHEMI). In NbCr{sub 2}(V), the results were consistent with exclusive site occupancies of Nb for the A sublattice and Cr and V for the B sublattice. The B-site occupancy of V is not expected from atom size effects alone. In NbCr{sub 2}(Ti), the results were consistent with Ti partitioning mostly to the A sites with some anti-site defects likely. In HfV{sub 2}(Nb), the results were consistent with Nb partitioning between the A and B sites. The results of the ALCHEMI analyses of these ternary C15 Laves phase materials will be discussed with respect to previously determined phase diagrams and first-principles total energy and electronic structure calculations.
Date: December 31, 1996
Creator: Kotula, P.G.; Chu, F.; Thoma, D.J.; Mitchell, T.E.; Anderson, I.M. & Bentley, J.
Partner: UNT Libraries Government Documents Department

Elastic constants of a Laves phase compound: C15 NbCr{sub 2}

Description: The single-crystal elastic constants of C15 NbCr{sub 2} have been computed by using a first-principles, self-consistent, full-potential total energy method. From these single-crystal elastic constants the isotropic elastic moduli are calculated using the Voigt and Reuss averages. The calculated values are in fair agreement with the experimental values. The implications of the results are discussed with regards to Poisson`s ratio and the direction dependence of Young`s modulus.
Date: April 1, 1997
Creator: Ormeci, A.; Chu, F.; Wills, J.M.; Chen, S.P.; Albers, R.C.; Thoma, D.J. et al.
Partner: UNT Libraries Government Documents Department

Advanced Energy Projects FY 1996 research summaries

Description: The mission of the Advanced Energy Projects Division (AEP) is to explore the scientific feasibility of novel energy-related concepts. These concepts are typically at an early stage of scientific development and, therefore, are premature for consideration by applied research or technology development programs. The portfolio of projects is dynamic, but reflects the broad role of the Department in supporting research and development for improving the Nation`s energy posture. Topical areas presently receiving support include: alternative energy sources; innovative concepts for energy conversion and storage; alternate pathways to energy efficiency; exploring uses of new scientific discoveries; biologically-based energy concepts; renewable and biodegradable materials; novel materials for energy technology; and innovative approaches to waste treatment and reduction. Summaries of the 70 projects currently being supported are presented. Appendices contain budget information and investigator and institutional indices.
Date: September 1, 1996
Partner: UNT Libraries Government Documents Department

Creep of a fine-grained, fully-lamellar, two-phase TiAl alloy at 760{degree}C

Description: Creep of a TiAl alloy, having a composition of Ti-47Al-2Cr-2Nb (in atom %) and a fine-grained, fully-lamellar structure, was carried out at 760 C and stresses between 69--723 MPa. It was found that, in addition to having good room temperature properties, the alloy exhibits higher creep resistance than other TiAl alloys with a similar composition. Both the creep data and microstructures of the alloy suggest that there exists a change in deformation mechanism from a glide-controlled process at high stresses to a recovery-controlled process at low stresses. Also, microstructural evidence indicates that the rate-controlling recovery mechanism is the climb of dislocation segments pinned by ledges at {gamma}/{alpha}{sub 2} interfacial boundaries.
Date: February 1, 1995
Creator: Wang, J.N.; Schwartz, A.J.; Nieh, T.G.; Liu, C.T.; Sikka, V.K. & Clemens, D.
Partner: UNT Libraries Government Documents Department

Effects of high temperature surface oxides on room temperature aqueous corrosion and environmental embrittlement of iron aluminides

Description: Studies were conducted to determine the effects of high-temperature surface oxides, produced during thermomechanical processing, heat treatment (750 {degrees}C in air, one hour) or simulated in-service-type oxidation (1000{degrees}C in air, 24 hours) on the room-temperature aqueous-corrosion and environmental-embrittlement characteristics of iron aluminides. Materials evaluated included the Fe{sub 3}Al-based iron aluminides, FA-84, FA-129, FAL and FAL-Mo, a FeAl-based iron aluminide, FA-385, and a disordered low-aluminum Fe-Al alloy, FAPY. Tests were performed in a mild acid-chloride solution to simulate aggressive atmospheric corrosion. Cyclic-anodic-polarization tests were employed to evaluate resistances to localized aqueous corrosion. The high-temperature oxide surfaces consistently produced detrimental results relative to mechanically or chemically cleaned surfaces. Specifically, the pitting corrosion resistances were much lower for the as-processed and 750{degrees} C surfaces, relative to the cleaned surfaces, for FA-84, FA-129, FAL-Mo, FA-385 and FAPY. Furthermore, the pitting corrosion resistances were much lower for the 1000{degrees}C surfaces, relative to cleaned surfaces, for FA-129, FAL and FAL-Mo.
Date: September 1, 1996
Creator: Buchanan, R.A. & Perrin, R.L.
Partner: UNT Libraries Government Documents Department

Ultrahigh temperature intermetallic alloys

Description: A new family of Cr-Cr{sub 2}Ta intermetallic alloys based on Cr-(6--10)Ta (at.%) is under development for structural use in oxidizing environments in the 1,000-1,300 C (1,832--2,372 F) temperature range. Development objectives relate to high temperature strength and oxidation resistance and room temperature fracture toughness. The 1,200 C (2,192 F) strength goals have been met: yield and fracture strengths of 275 MPa (40 ksi) and 345 MPa (50 ksi), respectively, were achieved. Progress in attaining reasonable fracture toughness of Cr-Cr{sub 2}Ta alloys has been made; current alloys exhibit room-temperature values of about 10--12 MPa{radical}m (1.1 MPa{radical}m = 1 ksi{radical}in.). Oxidation rates of these alloys at 950 C (1,742 F) in air are in the range of those reported for chromia-forming alloys. At 1,100 C (2,012 F) in air, chromia volatility was significant but, nevertheless, no scale spallation and positive weight gains of 1--5 mg/cm{sup 2} have been observed during 120-h, 6-cycle oxidation screening tests. These mechanical and oxidative properties represent substantial improvement over Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr alloys previously developed.
Date: November 1, 1998
Creator: Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L. & Carmichael, C.A.
Partner: UNT Libraries Government Documents Department

Advanced Industrial Materials (AIM) program. Compilation of project summaries and significant accomplishments FY 1996

Description: In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven {open_quotes}Vision Industries{close_quotes} that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: (1) Aluminum; (2) Chemical; (3) Forest Products; (4) Glass; (5) Metal Casting; (6) Refineries; and (7) Steel. This report is a compilation of project summaries and significant accomplishments on materials.
Date: April 1, 1997
Partner: UNT Libraries Government Documents Department

Nanostructured materials: A novel approach to enhanced performance. Final report

Description: Nanostuctured materials are an emerging class of materials that can exhibit physical and mechanical characteristics often exceeding those exhibited by conventional course grained materials. A number of different techniques can be employed to produce these materials. In this program, the synthesis methods were (a) mechanical alloying , (b) physical vapor deposition, and (c) plasma processing. The physical vapor deposition and plasma processing were discontinued after initial testing with subsequent efforts focused on mechanical alloying. The major emphasis of the program was on the synthesis, consolidation, and characterization of nanostructured Al-Fe, Ti-Al, Ti-Al-Nb, and Fe-Al by alloying intermetallics with a view to increase their ductilities. The major findings of this project are reported.
Date: May 1, 1996
Creator: Korth, G. E.; Froes, F. H. & Suryanarayana, C.
Partner: UNT Libraries Government Documents Department

A unified description of crystalline-to-amorphous transitions

Description: Amorphous metallic alloys can now be synthesized by a variety of solid-state processes demonstrating the need for a more general approach to crystalline-to-amorphous (c-a) transitions. By focusing on static atomic displacements as a measure of chemical and topological disorder, we show that a unified description of c-a transformations can be based on a generalization of the phenomenological melting criterion proposed by Lindemann. The generalized version assumes that melting of a defective crystal occurs whenever the sum of thermal and static mean-square displacements exceeds a critical value identical to that for melting of the defect-free crystal. This implies that chemical or topological disorder measured by static displacements is thermodynamically equivalent to heating, and therefore that the melting temperature of the defective crystal will decrease with increasing amount of disorder. This in turn implies the existence of a critical state of disorder where the melting temperature becomes equal to a glass-transition temperature below which the metastable crystal melts to a glass. The generalized Lindemann melting criterion leads naturally to an interpretation of c-a transformations as defect-induced, low-temperature melting of critically disordered crystals. Confirmation of this criterion is provided by molecular-dynamics simulations of heat-induced melting and of defect-induced amorphization of intermetallic compounds caused either by the production of Frenkel pairs or anti-site defects. The thermodynamic equivalence between static atomic disorder and heating is reflected in the identical softening effects which they have on elastic properties and also in the diffraction analysis of diffuse scattering from disordered crystals, where the effect of static displacements appears as an artificially-enlarged thermal Debye-Waller factor. Predictions of this new, unified approach to melting and amorphization are compared with available experimental information.
Date: July 1, 1993
Creator: Lam, N.Q.; Okamoto, P.R.; Devanathan, R. & Meshii, M.
Partner: UNT Libraries Government Documents Department

Effects of hydrogen absorption in TbNiAl and UNiAl

Description: Although hydrides of intermetallic compounds are used extensively as hydrogen-storage media, little is known about the exact nature of metal-hydrogen interactions. However, this knowledge is of essential importance for the understanding of thermodynamics and other properties. Hydrides (deuterides) of TbNiAl and UNiAl have been widely studied because of drastic increase of magnetic ordering temperature under hydrogenation. Here the authors report neutron-diffraction results of the three deuterides, TbNiAlD{sub 1.28}, TbNiAlD{sub 0.8}a nd UNiAlD{sub 2.23}.
Date: December 31, 1998
Creator: Bordallo, H.N.; Nakotte, H.; Schultz, A.; Kolomiets, A.V.; Havela, L. & Andreev, A.V.
Partner: UNT Libraries Government Documents Department

Multi-step wrought processing of TiAl-based alloys

Description: Wrought processing will likely be needed for fabrication of a variety of TiAl-based alloy structural components. Laboratory and development work has usually relied on one-step forging to produce test material. Attempts to scale-up TiAl-based alloy processing has indicated that multi-step wrought processing is necessary. The purpose of this study was to examine potential multi-step processing routes, such as two-step isothermal forging and extrusion + isothermal forging. The effects of processing (I/M versus P/M), intermediate recrystallization heat treatments and processing route on the tensile and creep properties of Ti-48Al-2Nb-2Cr alloys were examined. The results of the testing were then compared to samples from the same heats of materials processed by one-step routes. Finally, by evaluating the effect of processing on microstructure and properties, optimized and potentially lower cost processing routes could be identified.
Date: April 1, 1997
Creator: Fuchs, G. E.
Partner: UNT Libraries Government Documents Department

The effects of beryllium additions on the oxidation of nickel aluminide and titanium aluminide based intermetallics

Description: The effects of Be additions on the oxidation behavior of {beta}-NiAl in moist air at 1,000 C as well as on the borderline alumina-forming {gamma} + Laves Ti-Al-Cr based alloys at 800 C and 1,000 C in dry and moist air were investigated. The addition of Be to {beta}-NiAl suppressed the formation of transient alumina and resulted in the formation of a protective BeAl{sub 2}O{sub 4} spinel phase. In dry air, the addition of Be to the Ti-Al-Cr alloys also resulted in the formation of a protective BeAl{sub 2}O{sub 4} spinel phase. In moist air, only Ti-Al-Cr-Be alloys with a high Cr content (10 to 15 a/o) formed the protective BeAl{sub 2}O{sub 4} scale.
Date: November 1, 1998
Creator: Hanrahan, R.J. Jr.; Chen, K.C. & Brady, M.P.
Partner: UNT Libraries Government Documents Department