93 Matching Results

Search Results

Advanced search parameters have been applied.

Primary Piping Static Test Design Request

Description: It is requested that a design be initiated for the primary piping static test. This test is necessary to provide information as to the reliability of the pipe subjected to reactor operating conditions. The test conditions are as follows: temperature - 2000 F (isothermal), pressure effective - 42 psi, and test time - 10,000 hours. It will be necessary to test two sizes of pipe as shown on the preliminary piping layout (2.250-inch O.D. x .095-inch wall and 3 1/2 SCH. 10 pipe). The test specimens shall be jacketed in an inconel containment vessel. The test rig should be similar to the design of the 4-inch pressure vessels (T-1030244). In addition an outer containment vessel constructed of stainless steel must be provided around the clam shell heaters and the inconel containment vessel. This is to provide an inert atmosphere for the inconel vessel. Provisions should be made in the design for a 1/4-inch clad thermocouple. It is planned to use the pipe test as a vehicle for studying experimental Tc's (Cb-Mo and W-W.26% Re).
Date: November 30, 1961
Creator: O'Brien, R.W.
Partner: UNT Libraries Government Documents Department

Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

Description: A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger, and out through the holes in the bottom of the auger into the potentially hazardous area.
Date: April 1, 1998
Creator: McCormick, S.H. & Pigott, W.R.
Partner: UNT Libraries Government Documents Department

Computational and Experimental Analysis of the Effectiveness of the Argon Reservoir

Description: Experimental and computational studies were performed to evaluate the effectiveness of an Argon Reservoir (AR). The AR is designed to prevent the ingress of air into the extraction furnace during the insertion and removal of the extraction basket, which contains Tritium Producing Burnable Absorber Rods. Computational computer code studies were performed to evaluate the AR design concept. Based on the results of this study it was concluded that the Argon reservoir would be very effective in keeping air and moisture from infiltrating into the furnace module if the reservoir was continuously supplied with make-up argon.
Date: February 11, 2003
Creator: Brizes, W.
Partner: UNT Libraries Government Documents Department

COAL/POLYMER COPROCESSING WITH EFFICIENT USE OF HYDROGEN

Description: Inadequacies of current recovery and disposal methods for mixed plastic wastes drive the exploration of viable strategies for plastics resource recovery. The combination of diminishing landfill space and increasing usage of plastic products poses a significant dilemma, since current recovery methods are costly and ill-suited to handle contaminants. Coprocessing of polymeric waste with other materials may provide potential solutions to the deficiencies of current resource recovery methods, including unfavorable process economics. By incorporating plastic waste as a minor feed into an existing process, variations in supply and composition could be mediated, permitting continuous operation. One attractive option is the coprocessing of polymeric waste with coal under direct liquefaction conditions, allowing for simultaneous conversion of both feedstocks into high-valued products. Catalyst-directed coliquefaction of coal and polymeric materials not only has attractive environmental implications but also has the potential to enhance the economic viability of traditional liquefaction processes. By exploiting the higher H/C ratio of the polymeric material and using it as a hydrogen source, the overall process demand for molecular hydrogen and hydrogen donor solvents may be reduced. A series of model compound experiments has been conducted, providing a starting point for unraveling the complex chemistry underlying coliquefaction of coal and polymeric materials. Tetradecane (C{sub 14} H{sub 30} ) was used as a polyethylene mimic, and 4-(naphthylmethyl)bibenzyl (NBBM) was used as a coal model compound. Neat and binary mixture reactions of tetradecane and NBBM were carried out in an inert atmosphere at both low and high pressures to establish a thermal baseline for subsequent catalytic experiments. Work in the past six months has focused on analysis of light gaseous products for neat reactions of tetradecane, resulting in mass balances greater than 94%. The experimental protocol developed in the previous project period was used to conduct experiments at elevated pressures more representative ...
Date: March 20, 1998
Creator: BROADBELT, DR. LINDA J. & WITT, MATTHEW J. DE
Partner: UNT Libraries Government Documents Department

INERT Atmosphere confinement operability test procedure

Description: This Operability Test Procedure (OTP) provides instructions for testing operability of the Inert Atmosphere Confinement (IAC). The Inert Atmosphere Confinement was designed and built for opening cans of metal items that might have hydrided surfaces. Unreviewed Safety Question (USQ) PFP-97-005 addresses the discovery of suspected plutonium hydride forming on plutonium metal currently stored in the Plutonium Finishing Plant vaults. Plutonium hydride reacts quickly with air, liberating energy. The Inert Atmosphere Confinement was designed to prevent this sudden liberation of energy by opening the material in an inert argon atmosphere instead of the normal glovebox atmosphere. The IAC is located in glovebox HC-21A, room 230B of the 234-5Z Building at the Plutonium Finishing Plant (PFP) in the 200-West Area of the Hanford Site.
Date: February 22, 1999
Creator: RISENMAY, H.R.
Partner: UNT Libraries Government Documents Department

Fracture and creep of an Al{sub 2}O{sub 3}-SiC(whisker)-TiC(particle) composite.

Description: High-temperature fracture strength and compressive creep of an electrodischarge-machinable composite, Al{sub 2}O{sub 3}-30.9 vol.% SiC whiskers-23 vol.% TiC particles have been studied to 1200 C and 1450 C, respectively, in inert atmosphere. Microstructures of fractured and deformed specimens were examined by scanning and transmission electron microscopy. Fast fracture occurred at T {le} 1200 C. Steady-state creep was achieved for T > 1350 C at stresses < 80 MPa, with the rate-controlling mechanism being partially unaccommodated grain-boundary sliding, with a stress exponent of {approx}1 and an activation energy of {approx}470 kJ/mol.
Date: February 25, 1998
Creator: De Arellano-Lopez, A. R.
Partner: UNT Libraries Government Documents Department

Measuring the Fracture Toughness of TZM and ODS Molybdenum Alloys Using Standard and Sub-Sized Bend Specimens

Description: Oxide Dispersion Strengthened (ODS) and TZM molybdenum have excellent creep resistance and strength at high temperatures in inert atmospheres. Fracture toughness and tensile testing was performed at temperatures between -150 degrees C and 450 degrees C to characterize 6.35 mm thick plate material of ODS and TZM molybdenum. A transition from low fracture toughness values (5.8 to 29.6 MPa square root m) to values greater than 30 MPa square root m is observed for TZM molybdenum in the longitudinal orientation at 100 degrees C and in the transverse orientation at 150 degrees C. These results are consistent with data reported in literature for molybdenum. A transition to low fracture toughness values (less than 30 MPa square root m) was not observed for longitudinal ODS molybdenum at temperatures greater than or equal to -150 degrees C, while a transition to low fracture toughness values (12.6 to 25.4 MPa square root m) was observed for the transverse orientation at room-temperature. The fi ne spacing of La-oxide precipitates that are present in ODS molybdenum result in a transition temperature that is significantly lower than any molybdenum alloy reported to date, with upper bound fracture toughness values that bound the literature data. A comparison of fracture toughness values obtained using a 1T, 0.5T, and 0.25T Charpy shows that a 0.5T Charpy could be used as a sub-sized specimen geometry.
Date: December 1, 2002
Creator: Cockeram, B. V.
Partner: UNT Libraries Government Documents Department

Proliferation resistance assessment of the Integral Fast Reactor.

Description: The Integral Fast Reactor (IFR) concept includes a sodium-cooled fast reactor collocated with an integrated pyroprocess fuel recycling facility. The pyrochemical processes and the inert atmosphere of the heavily shielded fuel cycle facility provide inherent proliferation-resistant features for this advanced technology. The reactor can be designed to operate with a number of different conversion factors, so that it could be used for excess plutonium consumption or as a breeder if needed for rapid expansion of energy supply. The system contains a large quantity of plutonium and minor actinides, which at all times remain in extremely hostile environments and in chemical and physical forms that would require additional processing to extract weapons-suitable material. The aqueous processing equipment and facilities to accomplish such separation would not be available on site. Transportation would not be required in the reference deployment scenario. Nevertheless, the proliferation-resistance of some parts of the system could be considerably strengthened by advanced safeguards technologies. In spite of its inherent features, international deployment of the system would probably be limited to stable countries with a strong existing nuclear infrastructure.
Date: July 1, 2002
Creator: McFarlane, H. F.
Partner: UNT Libraries Government Documents Department

Thermal Stability of LiPF6 Salt and Li-ion Battery ElectrolytesContaining LiPF6

Description: The thermal stability of the neat LiPF6 salt and of 1 molal solutions of LiPF6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line FTIR. Pure LiPF6 salt is thermally stable up to 380 K in a dry inert atmosphere, and its decomposition path is a simple dissociation producing LiF as solid and PF5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF6 and water vapor to form POF3 and HF. No new products were observed in 1 molal solutions of LiPF6 in EC, DMC and EMC by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 358 K for 300 420 hrs. did not produce any significant quantity of new products as well. In particular, noalkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.
Date: March 8, 2006
Creator: Yang, Hui; Zhuang, Guorong V. & Ross Jr., Philip N.
Partner: UNT Libraries Government Documents Department

Thermal Decomposition of Radiation-Damaged Polystyrene

Description: The radiation-damaged polystyrene (given the identification name of 'polycube') was fabricated by mixing high-density polystyrene material ("Dylene Fines # 100") with plutonium and uranium oxides. The polycubes were used in the 1960s for criticality studies during processing of spent nuclear fuel. The polycubes have since been stored for almost 40 years at the Hanford Plutonium Finishing Plant (PFP) after failure of two processes to reclaim the plutonium and uranium oxides from the polystyrene matrix. Thermal decomposition products from this highly cross-linked polystyrene matrix were characterized using Gas Chromatograph/Mass Spectroscopy (GC/MS) system coupled to a horizontal furnace. The decomposition studies were performed in air and helium atmospheres at about 773 K. The volatile and semi-volatile organic products for the radiation-damaged polystyrene were different compared to virgin polystyrene. The differences were in the number of organic species generated and their concentrations. In the inert (i.e., helium) atmosphere, the major volatile organic products identified (in order of decreasing concentrations) were styrene, benzene, toluene, ethylbenzene, xylene, nathphalene, propane, .alpha.-methylbenzene, indene and 1,2,3-trimethylbenzene. But in air, the major volatile organic species identified changed slightly. Concentrations of the organic species in the inert atmosphere were significantly higher than those for the air atmosphere processing. Overall, 38 volatile organic species were identified in the inert atmosphere compared to 49 species in air. Twenty of the 38 species in the inert conditions were also products in the air atmosphere. Twenty-two oxidized organic products were identified during thermal processing in air.
Date: September 26, 2000
Creator: Abrefah, John & Klinger, George S.
Partner: UNT Libraries Government Documents Department

Fission-Product Separation Based on Room-Temperature Ionic-Liquids

Description: During the previous funding cycle for this project, we investigated the electrochemistry of Cs(I) in air and moisture-stable ionic liquids both with and without the addition of BOBCalixC6. These investigations revealed that the electrochemical windows of the dialkylimidazolium bis[(trifluoromethyl)sulfonyl]imide ionic liquids do not permit the direct electrochemical reduction of Cs(I), even when Hg electrodes are employed, because these organic cations are reduced at less negative potentials than Cs(I). However, Cs(I) coordinated by BOBCalixC6 can be electrolytically reduced to Cs(Hg) in tetraalkylammonium-based room-temperature ionic liquids such as tri-1-butylmethylammonium bis[(trifluoromethyl)sulfonyl]imide (Bu3MeN+Tf2N-) at Hg electrodes. Because this reduction process does not harm either the ionic liquid or the macrocycle, it is a promising method for recycling the cesium extraction system. The previous studies mentioned above were carried out under an inert atmosphere, i.e., in the absence of H2O and O2. However, it may not be economically feasible or even possible to carry out the recycling process in the absence of these contaminants during large-scale processing of aqueous tank waste. Thus, as described in our proposal, we have begun an investigation of the electrochemical recovery of Cs from the Bu3MeN+Tf2N- + BOBCalixC6 extraction system in an air atmosphere containing various amounts of water and oxygen. Our recent preliminary results were very surprising because they indicated that the electrochemical extraction process is relatively insensitive to the presence of small amounts of moisture even when the moisture content of the ionic liquid approaches 1000 ppm. Furthermore, we have found that the ''wet'' ionic liquid can be easily dehydrated under reduced pressure or by sparging with dry nitrogen gas without the need for heat or any other specialized treatment.
Date: June 1, 2005
Creator: Hussey, Charles L.
Partner: UNT Libraries Government Documents Department

Examination of spent PWR fuel rods after 15 years in dry storage.

Description: Virginia Power Surry Nuclear Station Pressurized Water Reactor (PWR) fuel was stored in a dry inert atmosphere Castor V/21 cask at the Idaho National Environmental and Engineering Laboratory (INEEL) for 15 years at peak cladding temperatures decreasing from about 350 to 150 C. Prior to the storage, the loaded cask was subjected to extensive thermal benchmark tests. The cask was opened to examine the fuel for degradation and to determine if it was suitable for extended storage. No rod breaches had occurred and no visible degradation or crud/oxide spallation were observed. Twelve rods were removed from the center of the T11 assembly and shipped from INEEL to the Argonne-West HFEF for profilometric scans. Four of these rods were punctured to determine the fission gas release from the fuel matrix and internal pressure in the rods. Three of the four rods were cut into five segments each, then shipped to the Argonne-East AGHCF for detailed examination. The test plan calls for metallographic examination of six samples from two of the rods, microhardness and hydrogen content measurements at or near the six metallographic sample locations, tensile testing of six samples from the two rods, and thermal creep testing of eight samples from the two rods to determine the extent of residual creep life. The results from the profilometry (12 rods), gas release measurements (4 rods), metallographic examinations (2 samples from 1 rod), and microhardness and hydrogen content characterization (2 samples from 1 rod) are reported here. The tensile and creep studies are just starting and will be reported at a later date, along with the additional characterization work to be performed. Although only limited prestorage characterization is available, a number of preliminary conclusions can be drawn based on comparison with characterization of Florida Power Turkey Point rods of a similar vintage. Based ...
Date: February 11, 2002
Creator: Einziger, R. E.; Tsai, H. C.; Billone, M. C. & Hilton, B. A.
Partner: UNT Libraries Government Documents Department

Current and future surveillance testing: WH atmosphere, HE and cellular silicone

Description: Selected surveillance data on warhead atmospheres, high explosives, and cellular silicone stress cushions will be presented for LLNL Enduring Stockpile weapons. Possible interpretations of apparent aging trends will be offered. Thoughts on additional surveillance testing that could enhance or ability to identify age related changes will be discussed.
Date: April 1, 1996
Creator: LeMay, J.D.
Partner: UNT Libraries Government Documents Department

Polonium purification

Description: Three processes for the purification of {sup 210}Po from irradiated bismuth targets are described. Safety equipment includes shielded hotcells for the initial separation from other activation products, gloveboxes for handling the volatile and highly toxic materials, and provisions for ventilation. All chemical separations must be performed under vacuum or in inerted systems. Two of the processes require large amounts of electricity; the third requires vessels made from exotic materials.
Date: September 1, 1996
Creator: Baker, J.D.
Partner: UNT Libraries Government Documents Department

Chloride-catalyzed corrosion of plutonium in glovebox atmospheres

Description: Characterization of glovebox atmospheres and the black reaction product formed on plutonium surfaces shows that the abnormally rapid corrosion of components in the fabrication line is consistent with a complex salt-catalyzed reaction involving gaseous hydrogen chloride (HCl) and water. Analytical data verify that chlorocarbon and HCl vapors are presented in stagnant glovebox atmospheres. Hydrogen chloride concentrations approach 7 ppm at some locations in the glovebox line. The black corrosion product is identified as plutonium monoxide monohydride (PuOH), a product formed by hydrolysis of plutonium in liquid water and salt solutions at room temperature. Plutonium trichloride (PuCl{sub 3}) produced by reaction of HCl at the metal surface is deliquescent and apparently forms a highly concentrated salt solution by absorbing moisture from the glovebox atmosphere. Rapid corrosion is attributed to the ensuing salt-catalyzed reaction between plutonium and water. Experimental results are discussed, possible involvement of hydrogen fluoride (HF) is examined, and methods of corrective action are presented in this report.
Date: April 1, 1998
Creator: Burgess, M.; Haschke, J.M.; Allen, T.H.; Morales, L.A.; Jarboe, D.M. & Puglisi, C.V.
Partner: UNT Libraries Government Documents Department

CSER 98-003: Criticality safety evaluation report for PFP glovebox HC-21A with button can opening

Description: Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then be sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into GloveboxHC-21 A are limited to those with a hydrogen to fissile atom ratio (H/X) {le} 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k{sub eff} = 0.95. Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle.
Date: February 23, 1999
Creator: Erickson, D. G.
Partner: UNT Libraries Government Documents Department

CSER 98-003: criticality safety evaluation report for PFP glovebox HC-21A with button can opening

Description: Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21 A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then be sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into Glovebox HC-21A are limited to those with a hydrogen to fissile atom ratio (H/X) {le} 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k{sub eff} = 0.95 (including uncertainties). Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle.
Date: February 25, 1999
Creator: ERICKSON, D.G.
Partner: UNT Libraries Government Documents Department

System specification/system design document comment review: Plutonium Stabilization and Packaging System. Notes of conference

Description: A meeting was held between DOE personnel and the BNFL team to review the proposed resolutions to DOE comments on the initial issue of the system specification and system design document for the Plutonium Stabilization and Packaging System. The objectives of this project are to design, fabricate, install, and start up a glovebox system for the safe repackaging of plutonium oxide and metal, with a requirement of a 50-year storage period. The areas discussed at the meeting were: nitrogen in can; moisture instrumentation; glovebox atmosphere; can marking-bar coding; weld quality; NFPA-101 references; inner can swabbing; ultimate storage environment; throughput; convenience can screw-top design; furnace/trays; authorization basis; compactor safety; schedule for DOE review actions; fire protection; criticality safety; applicable standards; approach to MC and A; homogeneous oxide; resistance welder power; and tray overfill. Revised resolutions were drafted and are presented.
Date: July 1, 1996
Partner: UNT Libraries Government Documents Department