152 Matching Results

Search Results

Advanced search parameters have been applied.

Meta-Analyses of the Associations of Respiratory Health Effectswith Dampness and Mold in Homes

Description: The Institute of Medicine (IOM) of the National Academy of Sciences recently completed a critical review of the scientific literature pertaining to the association of indoor dampness and mold contamination with adverse health effects. In this paper, we report the results of quantitative meta-analysis of the studies reviewed in the IOM report. We developed point estimates and confidence intervals (CIs) to summarize the association of several respiratory and asthma-related health outcomes with the presence of dampness and mold in homes. The odds ratios and confidence intervals from the original studies were transformed to the log scale and random effect models were applied to the log odds ratios and their variance. Models were constructed both accounting for the correlation between multiple results within the studies analyzed and ignoring such potential correlation. Central estimates of ORs for the health outcomes ranged from 1.32 to 2.10, with most central estimates between 1.3 and 1.8. Confidence intervals (95%) excluded unity except in two of 28 instances, and in most cases the lower bound of the CI exceeded 1.2. In general, the two meta-analysis methods produced similar estimates for ORs and CIs. Based on the results of the meta-analyses, building dampness and mold are associated with approximately 30% to 80% increases in a variety of respiratory and asthma-related health outcomes. The results of these meta-analyses reinforce the IOM's recommendation that actions be taken to prevent and reduce building dampness problems.
Date: January 1, 2006
Creator: Fisk, William J.; Lei-Gomez, Quanhong & Mendell, Mark J.
Partner: UNT Libraries Government Documents Department

A Formaldehyde Exposure Assessment Tool for Occupants of FEMA Temporary Housing Units

Description: The report outlines the methodology used to develop a web-based tool to assess the formaldehyde exposure of the occupants of Federal Emergency Management Administration (FEMA) temporary housing units (THUs) after Hurricanes Katrina and Rita in 2005. Linear regression models were built using available data to retrospectively estimate the indoor temperature and relative humidity, formaldehyde emission factors and concentration, and hence the formaldehyde exposures. The interactive web-tool allows the user to define the inputs to the model to evaluate formaldehyde exposures for different scenarios.
Date: October 1, 2010
Creator: Parthasarathy, Srinandini; Spears, Michael; Maddalena, Randy L.; Russell, Marion L & Apte, Michael G.
Partner: UNT Libraries Government Documents Department

A concentration rebound method for measuring particle penetrationand deposition in the indoor environment

Description: Continuous, size resolved particle measurements were performed in two houses in order to determine size-dependent particle penetration and deposition in the indoor environment. The experiments consisted of three parts: (1) measurement of the particle loss rate following artificial elevation of indoor particle concentrations, (2) rapid reduction in particle concentration through induced ventilation by pressurization of the houses with HEPA-filtered air, and (3) measurement of the particle concentration rebound after house pressurization stopped. During the particle concentration decay period, when indoor concentrations are very high, losses due to deposition are large compared to gains due to particle infiltration. During the concentration rebound period, the opposite is true. The large variation in indoor concentration allows the effects of penetration and deposition losses to be separated by the transient, two-parameter model we employed to analyze the data. We found penetration factors between 0.3 and 1 and deposition loss rates between 0.1 and 5 h{sup -1}, for particles between 0.1 and 10 {micro}m.
Date: September 1, 2002
Creator: tlthatcher@lbl.gov
Partner: UNT Libraries Government Documents Department

Multizone Age-of-Air Analysis

Description: Age of air is a technique for evaluating ventilation that has been actively used for over 20 years. Age of air quantifies the time it takes for outdoor air to reach a particular location or zone within then indoor environment. Age of air is often also used to quantify the ventilation effectiveness with respect to indoor air quality. In a purely single zone situation this use of age of air is straightforward, but application of age of air techniques in the general multizone environment has not been fully developed. This article looks at expanding those single-zone techniques to the more complicated environment of multizone buildings and in doing so develops further the general concept of age of air. The results of this analysis shows that the nominal age of air as often used cannot be directly used for determining ventilation effectiveness unless specific assumptions are made regarding source distributions.
Date: July 1, 2007
Creator: Sherman, Max H.
Partner: UNT Libraries Government Documents Department

Summary of Workshop: Barriers to Energy Efficient Residential Ventilation

Description: The objectives for this workshop were to bring together those with different viewpoints on the implementation of energy efficient ventilation in homes to share their perspectives. The primary benefit of the workshop is to allow the participants to get a broader understanding of the issues involved and thereby make themselves more able to achieve their own goals in this area. In order to achieve this objective each participant was asked to address four objectives from their point of view: (1) Drivers for energy efficient residential ventilation: Why is this an important issue? Who cares about it? Where is the demand: occupants, utilities, regulation, programs, etc? What does sustainability mean in this context? (2) Markets & Technologies: What products, services and systems are out there? What kinds of things are in the pipeline? What is being installed now? Are there regional or other trends? What are the technology interactions with other equipment and the envelope? (3) Barriers to Implementation: What is stopping decision makers from implementing energy-efficient residential ventilation systems? What kind of barriers are there: technological, cost, informational, structural, etc. What is the critical path? (4) Solutions: What can be done to overcome the barriers and how can/should we do it? What is the role of public vs. private institutions? Where can investments be made to save energy while improving the indoor environment? Ten participants prepared presentations for the workshop. Those presentations are included in sections at the end of this workshop report. These presentations provided the principal context for the discussions that happened during the workshop. Critical path issues were raised and potential solutions discussed during the workshop. As a secondary objective they have listed key issues and some potential consensus items which resulted from the discussions.
Date: January 10, 2008
Creator: Sherman, Max & Sherman, Max
Partner: UNT Libraries Government Documents Department

New Methods of Energy Efficient Radon Mitigation

Description: Two new radon mitigation techniques are introduced and their evaluation in a field study complemented by numerical model predictions is described. Based on numerical predictions, installation of a sub gravel membrane at the study site resulted in a factor of two reduction in indoor radon concentrations. Experimental data indicated that installation of 'short-circuit' pipes extending between the subslab gravel and outdoors, caused an additional factor of two decrease in the radon concentration. Consequently, the combination of these two passive radon mitigation features, called the membrane and short-circuit (MASC) technique, was associated with a factor of four reduction in indoor radon concentration. The energy-efficient active radon mitigation method, called efficient active subslab pressurization (EASP), required only 20% of the fan energy of conventional active subslab depressurization and reduced the indoor radon concentration by approximately a factor of 15, including the numerically-predicted impact of the sub-gravel membrane.
Date: May 1, 1994
Creator: Fisk, W.J.; Prill, R.J.; Wooley, J.; Bonnefous, Y.C.; Gadgil, A.J. & Riley, W.J.
Partner: UNT Libraries Government Documents Department

Effects on Occupants of Enhanced Particle Filtration in a non-problem office environment: A Double-Blind Crossover Intervention Study

Description: Workers in indoor environments often complain of symptoms, such as eye and nose irritation, headache, and fatigue, which improve away from work. Exposures causing such complaints, sometimes referred to as sick building syndrome, generally have not been identified. Evidence suggests these worker symptoms are related to chemical, microbiological, physical, and psychosocial exposures not well characterized by current methods. Most research in this area has involved cross-sectional studies, which are limited in their abilities to show causal connections. Experimental studies have also been conducted which, by changing one factor at a time to isolate its effects, can demonstrate benefits of an environmental intervention even before exposures or mechanisms are understood. This study was prompted by evidence that particulate contaminants may be related to acute occupant symptoms and discomfort. The objective was to assess, with a double-blind, double crossover intervention design, whether improved removal of small airborne particles by enhanced central filtration would reduce symptoms and discomfort.
Date: June 15, 1998
Creator: Mendell, M.J.; Fisk, W.J.; Petersen, M.; Hines, C.J.; Faulkner, D.; Deddens, J.A. et al.
Partner: UNT Libraries Government Documents Department

Predicting New Hampshire Indoor Radon Concentrations from geologic information and other covariates

Description: Generalized geologic province information and data on house construction were used to predict indoor radon concentrations in New Hampshire (NH). A mixed-effects regression model was used to predict the geometric mean (GM) short-term radon concentrations in 259 NH towns. Bayesian methods were used to avoid over-fitting and to minimize the effects of small sample variation within towns. Data from a random survey of short-term radon measurements, individual residence building characteristics, along with geologic unit information, and average surface radium concentration by town, were variables used in the model. Predicted town GM short-term indoor radon concentrations for detached houses with usable basements range from 34 Bq/m{sup 3} (1 pCi/l) to 558 Bq/m{sup 3} (15 pCi/l), with uncertainties of about 30%. A geologic province consisting of glacial deposits and marine sediments, was associated with significantly elevated radon levels, after adjustment for radium concentration, and building type. Validation and interpretation of results are discussed.
Date: May 1, 1998
Creator: Apte, M.G.; Price, P.N.; Nero, A.V. & Revzan, K.L.
Partner: UNT Libraries Government Documents Department

Bayesian Prediction of Mean Indoor Radon Concentrations for Minnesota Counties

Description: Past efforts to identify areas having higher than average indoor radon concentrations by examining the statistical relationship between local mean concentrations and physical parameters such as the soil radium concentration have been hampered by the noise in local means caused by the small number of homes monitored in some or most areas, In the present paper, indoor radon data from a survey in Minnesota are analyzed in such a way as to minimize the effect of finite sample size within counties, in order to determine the true county-to-county variation of indoor radon concentrations in the state and the extent to which this variation is explained by the variation in surficial radium concentration among counties, The analysis uses hierarchical modeling, in which some parameters of interest (such as county geometric mean (GM) radon concentrations) are assumed to be drawn from a single population, for which the distributional parameters are estimated from the data. Extensions of this technique, known as a random effects regression and mixed effects regression, are used to determine the relationship between predictive variables and indoor radon concentrations; the results are used to refine the predictions of each county's radon levels, resulting in a great decrease in uncertainty. The true county-to-county variation of GM radon levels is found to be substantially less than the county-to-county variation of the observed GMs, much of which is due to the small sample size in each county. The variation in the logarithm of surficial radium content is shown to explain approximately 80% of the variation of the logarithm of GM radon concentration among counties. The influences of housing and measurement factors, such as whether the monitored home has a basement and whether the measurement was made in a basement, are also discussed. This approach offers a self-consistent statistical method for predicting the mean ...
Date: August 1, 1995
Creator: Price, P.N.; Nero, A.V. & Gelman, A.
Partner: UNT Libraries Government Documents Department

Bayesian Prediction of Mean Indoor Radon Concentrations for Minnesota Counties

Description: Past efforts to identify areas with higher than average indoor radon concentrations by examining the statistical relationship between local mean concentrations and physical parameters such as the soil radium concentration have been hampered by the variation in local means caused by the small number of homes monitored in most areas. In this paper, indoor radon data from a survey in Minnesota are analyzed to minimize the effect of finite sample size within counties, to determine the true county-to-county variation of indoor radon concentrations in the state, and to find the extent to which this variation is explained by the variation in surficial radium concentration among counties. The analysis uses hierarchical modeling, in which some parameters of interest (such as county geometric mean (GM) radon concentrations) are assumed to be drawn from a single population, for which the distributional parameters are estimated from the data. Extensions of this technique, known as a random effects regression and mixed effects regression, are used to determine the relationship between predictive variables and indoor radon concentrations; the results are used to refine the predictions of each county's radon levels, resulting in a great decrease in uncertainty. The true county-to-county variation of GM radon levels is found to be substantially less than the county-to-county variation of the observed GMs, much of which is due to the small sample size in each county. The variation in the logarithm of surficial radium content is shown to explain approximately 80% of the variation of the logarithm of GM radon concentration among counties. The influences of housing and measurement factors, such as whether the monitored home has a basement and whether the measurement was made in a basement, are also discussed. The statistical method can be used to predict mean radon concentrations, or applied to other geographically distributed environmental parameters.
Date: February 1, 1996
Creator: Price, P.N.; Nero, A.V. & Gelman, A.
Partner: UNT Libraries Government Documents Department

Indoor Radon and Its Decay Products: Concentrations, Causes, and Control Strategies

Description: This report is an introduction to the behavior of radon 222 and its decay products in indoor air. This includes review of basic characteristics of radon and its decay products and of features of the indoor environment itself, all of which factors affect behavior in indoor air. The experimental and theoretical evidence on behavior of radon and its decay products is examined, providing a basis for understanding the influence of geological, structural, and meteorological factors on indoor concentrations, as well as the effectiveness of control techniques. We go on to examine three important issues concerning indoor radon. We thus include (1) an appraisal of the concentration distribution in homes, (2) an examination of the utility and limitations of popular monitoring techniques and protocols, and (3) an assessment of the key elements of strategies for controlling radon levels in homes.
Date: January 1, 1990
Creator: Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W. & Revzan, K.L.
Partner: UNT Libraries Government Documents Department

Climate Change, Energy Efficiency, and IEQ: Challenges and Opportunities for ASHRAE

Description: In the U.S, buildings consume approximately 39percent of primary energy, including 70percent of electricity [1]. Buildings are responsible for approximately 38percent of U. S. carbon dioxide emissions [1]. The process of HVAC, for maintaining acceptable indoor environmental quality (IEQ), consumes 37percent of the energy used in buildings [1].
Date: January 1, 2009
Creator: Fisk, William J.
Partner: UNT Libraries Government Documents Department

UCom: Ultra-wideband Communications in Harsh Propagation Environments

Description: LLNL has developed an ultra-wideband (UWB) system that provides unique, through-the-wall wireless communications in heavy metallic and heavy concrete indoor channels. LLNL's UWB system is the only available wireless communications system that performs successfully and reliably in facilities where conventional narrowband communications usually fail due to destructive reflections from multiple surfaces. These environments include: cargo ships and reinforced, heavy concrete buildings. LLNL's revolutionary system has applications for the military, as well as commercial indoor communications in multistory buildings, and cluttered industrial structures.
Date: March 14, 2007
Creator: Nekoogar, F
Partner: UNT Libraries Government Documents Department

Factors Affecting Indoor Air Concentrations of Volatile Organic Compounds at a Site of Subsurface Gasoline Contamination

Description: We report a field study of soil gas transport of volatile organic compounds (VOCs) into a slab-on-grade building found at a site contaminated with gasoline. Although the high VOC concentrations (30-60 g m{sup -3}) measured in the soil gas at depths of 0.7 m below the building suggest a potential for high levels of indoor VOC, the measured indoor air concentrations were lower than those in the soil gas by approximately six orders of magnitude ({approx} 0.03 mg m{sup -3}). This large ratio is explained by (1) the expected dilution of soil gas entering the building via ambient building ventilation (a factor of {approx}1000), and (2) an unexpectedly sharp gradient in soil gas VOC concentration between the depths of 0.1 and 0.7 m (a factor of {approx}1000). Measurements of the soil physical and biological characteristics indicate that a partial physical barrier to vertical transport in combination with microbial degradation provides a likely explanation for this gradient. These factors are likely to be important to varying degrees at other sites.
Date: November 1, 1995
Creator: Fischer, M. L.; Bentley, A. J.; Dunkin, K. A.; Hodgson, A. T.; Nazaroff, W. W.; Sextro, R. G. et al.
Partner: UNT Libraries Government Documents Department

HUMAN DISEASE FROM RADON EXPOSURES: THE IMPACT OF ENERGY CONSERVATION IN RESIDENTIAL BUILDINGS

Description: The level of radon and its daughters inside conventional buildings is often higher than the ambient background level. Interest in conserving energy is motivating homeowners and builers to reduce ventilation and hence to increase the concentration of indoor generated air contaminants, including radon. It is unliekly that the current radiation levels in conventional homes and buildings from radon daughters could account for a significant portion of the lung cancer rate in non-smokers. However, it is likely that some increased lung cancer risk would result from increased radon exposures; hence, it is prudent not to allow radon concentrations to rise significantly. There are several ways to implement energy conservation measures without increasing risks.
Date: July 1, 1979
Creator: Budnitz, R.J.; Berk, J.V.; Hollowell, C.D.; Nazaroff, W.W.; Nero, A.V. & Rosenfeld, A.H.
Partner: UNT Libraries Government Documents Department

Does Mixing Make Residential Ventilation More Effective?

Description: Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. The total ventilation rate is the most important factor in determining the exposure of occupants to given sources, but the zone- specific distribution of exhaust and supply air, and the mixing of ventilation air can have significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage through the building envelope, air distribution systems and the location of sources and occupants. This paper reports recent results of investigations to determine the impact that air mixing has on exposures of residential occupants to prototypical contaminants of concern. Evaluations of existing field measurements and simulations reported in the literature are combined with new analyses to provide an integrated overview of the topic. The results show that for extreme cases additional mixing can be a significant factor but for typical homes looking at average exposures mixing is not helpful and can even make exposures worse.
Date: August 16, 2010
Creator: Sherman, Max & Walker, Iain
Partner: UNT Libraries Government Documents Department

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities

Description: Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.
Date: May 1, 2006
Creator: Morrison, G. C.; Corsi, R. L.; Destaillats, H.; Nazaroff, W. W. & Wells, J. R.
Partner: UNT Libraries Government Documents Department

Characterizing Indoor Airflow and Pollutant Transport using Simulation Modeling for Prototypical Buildings. I. Office Buildings

Description: This paper describes the first efforts at developing a set of prototypical buildings defined to capture the key features affecting airflow and pollutant transport in buildings. These buildings will be used to model airflow and pollutant transport for emergency response scenarios when limited site-specific information is available and immediate decisions must be made, and to better understand key features of buildings controlling occupant exposures to indoor pollutant sources. This paper presents an example of this approach for a prototypical intermediate-sized, open style, commercial building. Interzonal transport due to a short-term source release, e.g., accidental chemical spill, in the bottom and the upper floors is predicted and corresponding HVAC system operation effects and potential responses are considered. Three-hour average exposure estimates are used to compare effects of source location and HVAC operation.
Date: June 1, 1999
Creator: Sohn, M.D.; Daisey, J.M. & Feustel, H.E.
Partner: UNT Libraries Government Documents Department

Why We Ventilate

Description: It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.
Date: September 1, 2011
Creator: Logue, Jennifer M.; Sherman, Max H.; Price, Phil N. & Singer, Brett C.
Partner: UNT Libraries Government Documents Department

A Review and a Limited Comparison of Methods for Measuring Total Volatile Organic Compounds in Indoor Air

Description: A number of methods attempt to measure the combined concentrations of volatile organic compounds (VOCs) in indoor air as total VOCs (TVOC). This paper reviews TVOC methods recently presently in the literature and in an international conference on indoor air quality for the purposes of identifying common practices and of assessing the impacts that choices of sample collection media and analytical methods and instrumentation can have on TVOC results. The paper also presents the results of laboratory and field comparisons of three TVOC methods. These are a flame-ionization-detector (FID) method, a gas chromatography/mass spectrometry (GC/MS) method, and a method employing a photoacoustic infra-red (IR) gas monitor. The laboratory experiments were conducted with eight different mixtures of VOCs. the FID method demonstrated an average accuracy of 93 {+-} 18% when the measured values were calculated as concentrations of carbon. The FID and GC/MS methods demonstrated average accuracies of 75 {+-} 22 and 77 {+-} 37%, respectively, when the measured hydrocarbon-equivalent values were compared to the expected mass concentrations of the mixtures. The higher uncertainty for the FID was largely due to the low mass response of 27% for chlorinated compounds. The response of the IR gas monitor varied between 6 and 560% for different classes of compounds. Air samples from ten buildings were analyzed by both the FID and GC/MS methods. The results were highly correlated and similar, with the GC/MS values approximately 20% higher on average.
Date: April 1, 1995
Creator: Hodgson, A.T.
Partner: UNT Libraries Government Documents Department

Air Distribution Effectiveness for Different MechanicalVentilation Systems

Description: The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix conditions between zones. Different types of ventilation systems will provide different amounts of dilution depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on work being done to both model the impact of different systems and measurements using a new multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The ultimate objective of this project is to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.
Date: August 1, 2007
Creator: Sherman, Max H. & Walker, Iain S.
Partner: UNT Libraries Government Documents Department

Air Leakage of U.S. Homes: Model Prediction

Description: Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses a model developed from that database in conjunction with US Census Bureau data for estimating air leakage as a function of location throughout the US.
Date: January 1, 2007
Creator: Sherman, Max H. & McWilliams, Jennifer A.
Partner: UNT Libraries Government Documents Department

Effects of room furnishings and air speed on particle depositionrates indoors

Description: Particle deposition to surfaces plays an important role in determining exposures to indoor particles. However, the effects of furnishings and air speed on these rates have not been well characterized. In this study, experiments were performed in an isolated room (volume = 14.2 m{sup 3}) using three different indoor furnishing levels (bare, carpeted and fully furnished) and four different airflow conditions. Deposition loss rates were determined by generating a short burst of polydispersed particles, then measuring the size-resolved (0.5-10 {micro}m) concentration decay rate using an aerodynamic particle sizer. Increasing the surface area from bare (35 m{sup 2} nominal surface area) to fully furnished (12 m{sup 2} additional surface area) increased the deposition loss rate by as much as a factor of 2.6, with the largest increase seen for the smallest particles. Increasing the mean airspeed from < 5 cms/s to 19 cm/s, by means of increasing fan speed, increased the deposition rate for all particle sizes studied by factors ranging from 1.3 to 2.4, with larger particles exhibiting greater effects than smaller particles. The significant effect of particle size and room conditions on deposition loss rates argues against using a single first-order loss-rate coefficient to represent deposition for integrated mass measurements (PM{sub 2.5} or PM{sub 10}).
Date: June 1, 2002
Creator: Thatcher, Tracy L.; Lai, Alvin C.K.; Moreno-Jackson, Rosa; Sextro, Richard G. & Nazaroff, William W.
Partner: UNT Libraries Government Documents Department

Performance of underfloor air distribution in a fieldsetting

Description: Underfloor air distribution (UFAD) is a new method of supplying heated or cooled air throughout a building. Reported advantages of UFAD include energy savings and improved indoor air quality (IAQ). We measured several aspects of the performance of an UFAD system installed in a medium-size office building. The measured air change effectiveness was very close to unity, which is comparable to that measured in buildings with typical overhead air distribution. The pollutant removal efficiency for carbon dioxide was 13% higher than expected in a space with well-mixed air, suggesting a 13% reduction in exposures to occupant generated pollutants. The increase in indoor air temperatures with height above the floor was only 1 to 2 C. This amount of thermal stratification could reduce the sensible energy requirements for cooling of outdoor air by approximately 10%. The occupant's level of satisfaction with thermal conditions was well above average and this high satisfaction rating could possibly be due, in all or part, to the use of a UFAD system. The results of this study provide some evidence of moderate energy and IAQ-related benefits of UFAD. Before general conclusions are drawn, the benefits need to be confirmed in other studies.
Date: October 1, 2005
Creator: Fisk, W.J.; Faulkner, D.; Sullivan, D.P.; Chao, C.; Wan, M.P.; Zagreus, L. et al.
Partner: UNT Libraries Government Documents Department