138 Matching Results

Search Results

Advanced search parameters have been applied.

Stress corrosion cracking behavior of Alloy 600 in high temperature water

Description: SCC susceptibility of Alloy 600 in deaerated water at 360 C (statically loaded U-bend specimens) is dependent on microstructure and whether the material was cold-worked and annealed (CWA) or hot-worked and annealed (HWA). All cracking was intergranular, and materials lacking grain boundary carbides were most susceptible to SCC initiation. CWA tubing materials are more susceptible to SCC initiation than HWA ring-rolled forging materials with similar microstructures (optical metallography). In CWA tubing materials, one crack dominated and grew to a visible size. HWA materials with a low hot-working finishing temperature (<925 C) and final anneals at 1010-1065 C developed both large cracks (similar to those in CWA materials) and small intergranular microcracks detectable only by destructive metallography. HWA materials with a high hot-working finishing temperature (>980 C) and a high-temperature final anneal (>1040 C), with grain boundaries that are fully decorated, developed only microcracks in all specimens. These materials did not develop large, visually detectable cracks, even after more than 300 weeks exposure. A low-temperature thermal treatment (610 C for 7h), which reduces or eliminates SCC in Alloy 600, did not eliminate microcrack formation in high temperature processed HWA materials. Conventional metallographic and analytical electron microscopy (AEM) were done on selected materials to identify the factors responsible for the observed differences in cracking behavior. Major difference between high-temperature HWA and low-temperature HWA and CWA materials was that the high temperature processing and final annealing produced predominantly ``semi-continuous`` dendritic M{sub 7}C{sub 3} carbides along grain boundaries with a minimal amount of intragranular carbides. Lower temperature processing produced intragranular M7C3 carbides, with less intergranular carbides.
Date: July 1, 1995
Creator: Webb, G.L. & Burke, M.G.
Partner: UNT Libraries Government Documents Department

Modeling of stress distributions on the microstructural level in Alloy 600

Description: Stress distribution in a random polycrystalline material (Alloy 600) was studied using a topologically correct microstructural model. Distributions of von Mises and hydrostatic stresses at the grain vertices, which could be important in intergranular stress corrosion cracking, were analyzed as functions of microstructure, grain orientations and loading conditions. Grain size, shape, and orientation had a more pronounced effect on stress distribution than loading conditions. At grain vertices the stress concentration factor was higher for hydrostatic stress (1.7) than for von Mises stress (1.5). The stress/strain distribution in the volume (grain interiors) is a normal distribution and does not depend on the location of the studied material volume i.e., surface vs/bulk. The analysis of stress distribution in the volume showed the von Mises stress concentration of 1.75 and stress concentration of 2.2 for the hydrostatic pressure. The observed stress concentration is high enough to cause localized plastic microdeformation, even when the polycrystalline aggregate is in the macroscopic elastic regime. Modeling of stresses and strains in polycrystalline materials can identify the microstructures (grain size distributions, texture) intrinsically susceptible to stress/strain concentrations and justify the correctness of applied stress state during the stress corrosion cracking tests. Also, it supplies the information necessary to formulate the local failure criteria and interpret of nondestructive stress measurements.
Date: April 1995
Creator: Kozaczek, K. J.; Petrovic, B. G.; Ruud, C. O. & Mcllree, A. R.
Partner: UNT Libraries Government Documents Department

Fracture toughness of Alloy 600 and EN82H weld in air and water

Description: The fracture toughness of Alloy 600 and its weld, EN82H, was characterized in 54 C to 338 C air and hydrogenated water. Elastic-plastic J{sub IC} testing was performed due to the inherent high toughness of these materials. Alloy 600 exhibited excellent fracture toughness under all test conditions. While EN82H welds displayed excellent toughness in air and high temperature water, a dramatic toughness degradation occurred in water at temperatures below 149 C. Comparison of the cracking response in low temperature water with that for hydrogen-precharged specimens tested in air demonstrated that the loss in toughness is due to a hydrogen-induced intergranular cracking mechanism. At loading rates about approx. 1000 MPa {radical}m/h, the toughness in low temperature water is improved because there is insufficient time for hydrogen to embrittle grain boundaries. Electron fractographic examinations were performed to correlate macroscopic properties with key microstructural features and operative fracture mechanisms.
Date: June 1, 1999
Creator: Mills, W.J. & Brown, C.M.
Partner: UNT Libraries Government Documents Department

Application of the normalization data analysis technique for single specimen R-curve determination

Description: The authors conclude that the normalization technique for single specimen R-curve and J{sub IC} determination can be very effective. Much like EPD, this technique requires some user interpretation/judgement during data analysis and may be difficult to standardize or fully automate even with strict analysis rules.
Date: March 1, 1999
Creator: Porr, W.C. & Mills, W.J.
Partner: UNT Libraries Government Documents Department

A joint computational and experimental study to evaluate Inconel-sheathed thermocouple performance in flames.

Description: A joint experimental and computational study was performed to evaluate the capability of the Sandia Fire Code VULCAN to predict thermocouple response temperature. Thermocouple temperatures recorded by an Inconel-sheathed thermocouple inserted into a near-adiabatic flat flame were predicted by companion VULCAN simulations. The predicted thermocouple temperatures were within 6% of the measured values, with the error primarily attributable to uncertainty in Inconel 600 emissivity and axial conduction losses along the length of the thermocouple assembly. Hence, it is recommended that future thermocouple models (for Inconel-sheathed designs) include a correction for axial conduction. Given the remarkable agreement between experiment and simulation, it is recommended that the analysis be repeated for thermocouples in flames with pollutants such as soot.
Date: September 1, 2005
Creator: Brundage, Aaron L.; Nicolette, Vernon F.; Donaldson, A. Burl; Kearney, Sean Patrick & Gill, Walter
Partner: UNT Libraries Government Documents Department

Effects of hydrogen on electropotential monitoring of stress corrosion crack growth

Description: Electropotential monitoring (EPM) has a crack growth measurement resolution that is an order of magnitude greater than methods that rely on crack mouth opening displacement. However, two phenomena have been identified that compromise the accuracy of the EPM technique. Coolant hydrogen concentrations above those needed to chemically reduce nickel oxide to metallic nickel cause EPM to underestimate the true crack length. The metallic nickel provides an electrical conduction path at contact points across the irregular crack surface thereby lowering the EPM potential. The coolant hydrogen concentration at which this reduction occurs is temperature dependent and correlates with an abrupt decrease in the rate of SCC crack growth. It was also found that EPM can indicate large crack growth when none actually exists. At temperatures > 315 C (600 F) the electrical resistivity of mill annealed Alloy 600 increased by as much as 5% in a period of weeks or months. Each 1% increase in resistivity results in a bias in the EPM indicated cracklength of about 0.2 mm (0.008 inches). Smaller changes in the electrical resistivity of other alloys have been measured which rank as EN52> X-750> 304SS> nickel. It has been shown that these resistivity changes occur during exposure to high temperature water or inert gas. Strategies to minimize the effects of these two phenomena on EPM measurement are discussed.
Date: August 1, 1997
Creator: Thompson, C.D.; Carey, D.M. & Perazzo, N.L.
Partner: UNT Libraries Government Documents Department

Rotating field eddy current probe for characterization of cracking in non-magnetic tubing

Description: A rotating field eddy current probe was built and tested for use in small diameter, non-magnetic tubing. The rotating field probe is a driver/pickup style with two orthogonally wound drive coils and a pancake pickup coil. The driver coils are excited by two sine waves 90{degree} out of phase with each other. The physical arrangement of the drive coils and the 90{degree} phase shift of the excitation waveforms creates a field which rotates in the test piece under the drive coils. Preliminary tests on electrical discharge machined (EDM) notches show that phased based estimates of notch depth are possible. Probes currently used for detection of cracks in tubing produce responses that have proven unreliable for estimating defect depths. This recently developed version of the rotating field eddy current probe produces a bipolar response in the presence of a crack or a notch. Typically, the phase angle of a bipolar eddy current response is easily identified and measured and is used extensively for estimating depths of volumetric defects. Data are shown relating the phase angle of the rotating field probe`s bipolar response to the depth of circumferential EDM notches.
Date: July 1, 1998
Creator: Capobianco, T.E.
Partner: UNT Libraries Government Documents Department

Fracture behavior of nickel-based alloys in water

Description: The cracking resistance of Alloy 600, Alloy 690 and their welds, EN82H and EN52, was characterized by conducting J{sub IC} tests in air and hydrogenated water. All test materials displayed excellent toughness in air and high temperature water, but Alloy 690 and the two welds were severely embrittled in low temperature water. In 54 C water with 150 cc H{sub 2}/kg H{sub 2}O, J{sub IC} values were typically 70% to 95% lower than their air counterparts. The toughness degradation was associated with a fracture mechanism transition from microvoid coalescence to intergranular fracture. Comparison of the cracking response in water with that for hydrogen-precharged specimens tested in air demonstrated that susceptibility to low temperature cracking is due to hydrogen embrittlement of grain boundaries. The effects of water temperature, hydrogen content and loading rate on low temperature crack propagation were studied. In addition, testing of specimens containing natural weld defects and as-machined notches was performed to determine if low temperature cracking can initiate at these features. Unlike the other materials, Alloy 600 is not susceptible to low temperature cracking as the toughness in 54 C water remained high and a microvoid coalescence mechanism was operative in both air and water.
Date: August 1, 1999
Creator: Mills, W.J. & Brown, C.M.
Partner: UNT Libraries Government Documents Department

Modifications in the grain boundary character distribution in FCC materials through thermomechanical processing

Description: Recently, a body of work has emerged that indicates the potential to improve certain materials' properties through thermomechanical processing (TMP) solely by controlling grain misorientations. The grain boundary character distribution (GBCD) is defined as a microstructural property that describes the proportions of ''special'' and ''random'' boundaries with reference to the coincident site lattice model. Most of the ''optimization'' treatments reported in the literature have been performed on f.c.c. metals and alloys with medium to low stacking fault energies and have resulted in microstructures with high fractions of {Sigma}3, {Sigma}9, and {Sigma}27 boundaries, or {Sigma}3{sup n} type boundaries. It could be interpreted that only an increased incidence of annealing twinning is required to improve the GBCD. However, it also appears imperative that the formation of annealing twins disrupt the connectivity of the random boundary network, thus implying that {Sigma}3{sup n} reactions and resultant triple junctions are critical. Experiments to modify the GBCD in model materials like oxygen-free electronic Cu and Inconel 600 are presented and the efficacy of the processing routes is assessed in terms of the random boundary network and evolution of texture in the processed microstructures.
Date: March 1999
Creator: King, W. E.; Kumar, M. & Schwartz, A. J.
Partner: UNT Libraries Government Documents Department

Proceedings of the USNRC/EPRI/ANL heated crevice seminar.

Description: An international Heated Crevice Seminar, sponsored by the Division of Engineering Technology, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Argonne National Laboratory, and the Electric Power Research Institute, was held at Argonne National Laboratory on October 7-11, 2002. The objective of the seminar was to provide a working forum for the exchange of information by contributing experts on current issues related to corrosion in heated crevices, particularly as it relates to the integrity of PWR steam generator tubes. Forty-five persons from six countries attended the seminar, including representatives from government agencies, private industry and consultants, government research laboratories, nuclear vendors, and electrical utilities. The seminar opened with keynote talks on secondary-side crevice environments associated with IGA and IGSCC of mill-annealed Alloy 600 steam generator tubes and the submodes of corrosion in heat transfer crevices. This was followed by technical sessions on (1) Corrosion in Crevice Geometries, (2) Experimental Methods, (3) Results from Experimental Studies, and (4) Modeling. The seminar concluded with a panel discussion on the present understanding of corrosive processes in heated crevices and future research needs.
Date: August 31, 2003
Creator: Park, J. Y.; Fruzzetti, K.; Muscara, J.; Diercks, D. R.; Technology, Energy; EPRI et al.
Partner: UNT Libraries Government Documents Department

Shielding experiments by the JASMIN collaboration at Fermilab (II) - Radioactivity measurement induced by secondary particles from the anti-proton production target

Description: The JASMIN Collaboration has performed an experiment to conduct measurements of nuclear reaction rates around the anti-proton production (Pbar) target at the Fermi National Accelerator Laboratory (FNAL). At the Pbar target station, the target, consisting an Inconel 600 cylinder, was irradiated by a 120 GeV/c proton beam from the FNAL Main Injector. The beam intensity was 3.6 x 10{sub 12} protons per second. Samples of Al, Nb, Cu, and Au were placed near the target to investigate the spatial and energy distribution of secondary particles emitted from it. After irradiation, the induced activities of the samples were measured by studying their gamma ray spectra using HPGe detectors. The production rates of 30 nuclides induced in Al, Nb, Cu, Au samples were obtained. These rates increase for samples placed in a forward (small angle) position relative to the target. The angular dependence of these reaction rates becomes larger for increasing threshold energy. These experimental results are compared with Monte Carlo calculations. The calculated results generally agree with the experimental results to within a factor of 2 to 3.
Date: January 1, 2011
Creator: Yashima, Hiroshi; Matsuda, Norihiro; Kasugai, Yoshimi; Matsumura, Hiroshi; Iwase, Hiroshi; Kinoshita, Norikazu et al.
Partner: UNT Libraries Government Documents Department

Modeling of grain boundary stresses in Alloy 600

Description: Corrosive environments combined with high stress levels and susceptible microstructures can cause intergranular stress corrosion cracking (IGSCC) of Alloy 600 components on both primary and secondary sides of pressurized water reactors. One factor affecting the IGSCC is intergranular carbide precipitation controlled by heat treatment of Alloy 600. This study is concerned with analysis of elastic stress fields in vicinity of M{sub 7}C{sub 3} and M{sub 23}C{sub 6} carbides precipitated in the matrix and at a grain boundary triple point. The local stress concentration which can lead to IGSCC initiation was studied using a two-dimensional finite element model. The intergranular precipitates are more effective stress raisers than the intragranular precipitates. The combination of the elastic property mismatch and the precipitate shape can result in a local stress field substantially different than the macroscopic stress. The maximum local stresses in the vicinity of the intergranular precipitate were almost twice as high as the applied stress.
Date: April 1995
Creator: Kozaczek, K. J.; Sinharoy, A.; Ruud, C. O. & Mcllree, A. R.
Partner: UNT Libraries Government Documents Department

The relationship between observed stress corrosion cracking fracture morphology and microstructure in Alloy 600

Description: Microstructure is known to influence the stress corrosion cracking (SCC) behavior of Alloy 600 in both hydrogenated water and steam environments. This study evaluated the relative SCC response of a single heat of Alloy 600 as a function of microstructure in a hydrogenated doped-steam environment. The 400 C doped-steam environment was selected for the SCC tests to accelerate cracking. The material was evaluated in three conditions: (1) as-received (2) as-annealed, and (3) as-annealed + 26% deformation. Microstructural characterization was performed using analytical electron microscopy (AEM) techniques for the evaluation of carbide type and morphology, and general structure. Constant displacement (bolt-loaded) compact tension specimens were used to induce SCC. The as-annealed and as-annealed plus cold worked samples had two fracture morphologies: a rough intergranular SCC fracture morphology and a smooth intergranular fracture morphology. The SCC fracture in the as-received specimens was characterized by a classic intergranular morphology at low magnification, consistent with the microstructural evaluation of cross-sectional metallographic samples. More detailed examination revealed a pseudo-intergranular fracture morphology. This pseudo-intergranular morphology appears to be comprised of very fine cleavage-like microfacets. These observations may assist in understanding the difference in SCC fracture morphologies as reported in the open literature.
Date: December 31, 1997
Creator: Symons, D.M.; Burke, M.G. & Foster, J.P.
Partner: UNT Libraries Government Documents Department

Microstructure and kinetics of hot corrosion for a nickel alloy in molten salt

Description: Metallography, analytical SEM, and XRD were used to measure kinetics and characterize the microstructure of hot corrosion of the Ni-Cr-Fe alloy INCONEL 600 after 500 h immersion in molten Na{sub 2}CO{sub 3}- NaCl salt at 900-950 C in an oxidizing atmosphere. This was done to assess the alloy as a reaction vessel material for a waste treatment process known as Molten Salt Oxidation. The alloy was found to hot corrode by surface oxidation and intergranular attack. Combined rate for loss of load-bearing cross-section metal was comparable to corrosion rates for analogous salts. About 5% of the oxide scale was a continuous, dense, protective layer of Cr{sub 2}O{sub 3} at the metal/oxide interface. A middle portion comprised about 55% of the scale and was a porous, mixed oxide of NiO>Cr{sub 2}O{sub 3}>Fe{sub 2}O{sub 3}. The outer 40% was nearly all NiO with dense grains and cavitated grain boundaries. Overall, the NiO was dominant and the lesser amounts of Cr{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} were roughly equivalent. No direct invasion of salt through the oxide to the metal was observed.
Date: December 1, 1996
Creator: Stevens, D.W.; Brummond, W.A.; Grimmett, D.L.; Newcomb, J.C.; Chiang, K.T. & Gay, R.L.
Partner: UNT Libraries Government Documents Department

Residual stresses in weld deposited clad pressure vessels and nozzles

Description: Results of through-thickness residual stress measurements are provided for a variety of samples of weld deposited 308/309L stainless steel and Alloy 600 cladding on low-alloy pressure vessel ferritic steels. Clad thicknesses between 5 and 9mm on samples that vary in thickness from 45 to 200mm were studied. The samples were taken from flat plates, from a spherical head of a pressure vessel, from a ring-segment of a nozzle bore, and from the transition radius between a nozzle and a pressure vessel shell. A layer removal method was used to measure the residual stresses. The effects of uncertainties in elastic constants (Young`s modulus and Poisson`s ratio) as well as experimental error are assessed. All measurements were done at room temperature. The results of this work indicate that curvature plays a significant role in cladding residual stress and that tensile residual stresses as high as the yield stress can be measured in the cladding material. Since the vessel from which the spherical and nozzle corner samples were taken was hydrotested, and the flat plate specimens were taken from specimens used in mechanical fatigue testing, these results suggest that rather high tensile residual stresses can be retained in the cladding material even after some mechanical loading associated with hydrotesting and that higher levels of hydrotest loading would be required to alter the cladding residual stresses.
Date: April 1, 1998
Creator: Jones, D.P.; Mabe, W.R.; Shadley, J.R. & Rybicki, E.F.
Partner: UNT Libraries Government Documents Department

An Investigation of the Mechanism of IGA/SCC of Alloy 600 in Corrosion Accelerating Heated Crevice Environments. Technical Progress Report

Description: OAK-B135 An Investigation of the Mechanism of IGA/SCC of Alloy 600 in Corrosion Accelerating Heated Crevice Environments. Technical Progress Report. This program focuses on understanding the mechanisms causing corrosion damage to steam generator tubes in a pressurized water reactor (PWR) and the effects of the proposed remedial measures. The crevice formed by the tube/tube support plate (T/TSP) intersection in a PWR steam generator is a concentration site for nonvolatile impurities (referred to as hideout) in the steam generator water. The restricted mass transport in the small crevice volume prevents the species, which concentrate during the generation of steam, from quickly dispersing into the bulk water. The concentrated solutions in crevices have been a contributing cause of several forms of corrosion of steam generator tubes including intergranular attack/stress corrosion cracking (IGA/SCC), pitting, and wastage.
Date: January 1, 1999
Creator: Lumsden, Jesse
Partner: UNT Libraries Government Documents Department

An Investigation of the Mechanism of IGA/SCC of Alloy 600 in Corrosion Accelerating Heated Crevice Environments. Technical Progress Report

Description: This program focuses on understanding mechanisms causing corrosion damage to steam generator tubes in a pressurized water reactor (PWR). The crevice formed by the tube/tube support plate (T/TSP) intersection in a PWR steam generator is a concentration site for nonvolatile impurities (referred to as hideout) in the steam generator water. The restricted mass transport in the small crevice volume prevents the species, which concentrate during the generation of steam, from quickly dispersing into the bulk water. The concentrated solutions in crevices have been a contributing cause of several forms of corrosion of steam generator tubes including intergranular attack/stress corrosion cracking (IGA/SCC), pitting, and wastage.
Date: November 1, 1999
Creator: Lumsden, Jessee
Partner: UNT Libraries Government Documents Department

An investigation of the mechanism of IGA/SCC of alloy 600 in corrosion accelerating heated crevice environments. Quarterly Technical Progress Report No. 4 for the period May 1, 2000 through July 31, 2000

Description: OAK-B135 An investigation of the mechanism of IGA/SCC of alloy 600 in corrosion accelerating heated crevice environments. Quarterly Technical Progress Report No. 4 for the period May 1, 2000 through July 31, 2000
Date: July 31, 2000
Creator: Lumsden, Dr. Jesse
Partner: UNT Libraries Government Documents Department

Characterization of flaws in a tube bundle mock-up for reliability studies

Description: As part of an assessment of in-service inspection of steam generator tubes, the authors will assemble a steam generator mock-up for round robin studies and use as a test bed in evaluating emerging technologies. Progress is reported on the characterization of flaws that will be part of the mock-up. Eddy current and ultrasonic techniques are being evaluated as a means to characterize the flaws in the mock-up tubes before final assembly. Twenty Inconel 600 tubes with laboratory-grown cracks, typical of those to be used in the mock-up, were provided by Pacific Northwest National Laboratory for laboratory testing. After the tubes were inspected with eddy current and ultrasonic techniques, they were destructively analyzed to establish the actual depths, lengths, and profiles of the cracks. The analysis of the results will allow the best techniques to be used for characterizing the flaws in the mock-up tubes.
Date: October 1, 1996
Creator: Kupperman, D.S. & Bakhtiari, S.
Partner: UNT Libraries Government Documents Department

Steam generator tube integrity program: Annual report, August 1995--September 1996. Volume 2

Description: This report summarizes work performed by Argonne National Laboratory on the Steam Generator Tube Integrity Program from the inception of the program in August 1995 through September 1996. The program is divided into five tasks: (1) assessment of inspection reliability, (2) research on ISI (inservice-inspection) technology, (3) research on degradation modes and integrity, (4) tube removals from steam generators, and (5) program management. Under Task 1, progress is reported on the preparation of facilities and evaluation of nondestructive evaluation techniques for inspecting a mock-up steam generator for round-robin testing, the development of better ways to correlate failure pressure and leak rate with eddy current (EC) signals, the inspection of sleeved tubes, workshop and training activities, and the evaluation of emerging NDE technology. Results are reported in Task 2 on closed-form solutions and finite-element electromagnetic modeling of EC probe responses for various probe designs and flaw characteristics. In Task 3, facilities are being designed and built for the production of cracked tubes under aggressive and near-prototypical conditions and for the testing of flawed and unflawed tubes under normal operating, accident, and severe-accident conditions. Crack behavior and stability are also being modeled to provide guidance for test facility design, develop an improved understanding of the expected rupture behavior of tubes with circumferential cracks, and predict the behavior of flawed and unflawed tubes under severe accident conditions. Task 4 is concerned with the acquisition of tubes and tube sections from retired steam generators for use in the other research tasks. Progress on the acquisition of tubes from the Salem and McGuire 1 nuclear plants is reported.
Date: February 1998
Creator: Diercks, D. R.; Bakhtiari, S.; Kasza, K. E.; Kupperman, D. S.; Majumdar, S.; Park, J. Y. et al.
Partner: UNT Libraries Government Documents Department

The Mixed Waste Management Facility. Monthly report, February 1996

Description: During February the Project activities included completion of the cost-benefit analysis for the MWMF Project, completion of the 95% Title 2 design review for the DWTF Phase 2, further development of an MWMF business plan for working with industry, and finalization of outstanding issues from the Preliminary Design Review. Based on the best available data, the results of the cost-benefit analysis lead to three simple conclusions: (1) it would be cost effective for the DOE to complete pilot-scale demonstrations of alternatives to incineration prior to design and construction of full-scale facilities; (2) given that demonstrations are to be conducted, it is more cost effective to consolidate these in the MWMF, cost-benefit from a centralized demonstration facility will more than pay for the cost of the facility over the first eight demonstrations; (3) as the cost for independent site demonstrations or the cost for deploying full-scale treatment facilities is reduced, the net benefit of demonstrations is reduced. However, under these circumstances, the risk of deploying technologies increases and the ability to promote competition among small companies, unable to compete with independent pilot-scale demonstrations, will be significantly reduced. The 95% design review of the MWMF building, DWTF Phase 2, was completed with a number of minor comments to be incorporated in the final design. Technically, the first phase of testing for the MSO (Molten Salt Oxidation) demonstrations in the engineering development unit (EDU) have been completed. A number of key engineering issues were identified and resolved including the parameters associated with the chloride content for salt recycle, baffle design, side injector, burst disk design, and material evaluations. The EDU unit will be refurbished in March for continued operations to finalize design details for the downcomer injector for solid and liquid feeds, alternate baffle design, and other engineering design issues.
Date: March 1, 1996
Creator: Streit, R.D.
Partner: UNT Libraries Government Documents Department

Influence of Processing Method on the Grain Boundary Character Distribution and Network Connectivity

Description: There exists a growing body of literature that correlates the fraction of ''special'' boundaries in a microstructure, as described by the Coincident Site Lattice Model, to properties such as corrosion resistance, intergranular stress corrosion cracking, creep, etc. Several studies suggest that the grain boundary character distribution (GBCD), which is defined in terms of the relative fractions of ''special'' and ''random'' grain boundaries, can be manipulated through thermomechanical processing. This investigation evaluates the influence of specific thermomechanical processing methods on the resulting GBCD in FCC materials such as oxygen-free electronic (ofe) copper and Inconel 600. We also demonstrate that the primary effect of thermomechanical processing is to reduce or break the connectivity of the random grain boundary network. Samples of ofe Cu were subjected to a minimum of three different deformation paths to evaluate the influence of deformation path on the resulting GBCD. These include: rolling to 82% reduction in thickness, compression to 82% strain, repeated compression to 20% strain followed by annealing. In addition, the influence of annealing temperature was probed by applying, for each of the processes, three different annealing temperatures of 400, 560, and 800 C. The observations obtained from automated electron backscatter diffraction (EBSD) characterization of the microstructure are discussed in terms of deformation path, annealing temperature, and processing method. Results are compared to previous reports on strain-annealed ofe Cu and sequential processed Inconel 600. These results demonstrate that among the processes considered, sequential processing is the most effective method to disrupt the random grain boundary network and improve the GBCD.
Date: December 20, 1999
Creator: Kumar, M & King, W.E.
Partner: UNT Libraries Government Documents Department

Solar synthesis of advanced materials: A solar industrial program initiative

Description: This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000{degrees}C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including the following: Metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).
Date: June 1, 1992
Creator: Lewandowski, A.
Partner: UNT Libraries Government Documents Department

Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

Description: The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these experiments were of particular importance because they provide extensive information which can be directly applied to the design of large LMFBR’s. It ...
Date: March 1, 2010
Creator: Bess, John D.
Partner: UNT Libraries Government Documents Department