563 Matching Results

Search Results

Advanced search parameters have been applied.

Technical Basis for Assessing Uranium Bioremediation Performance

Description: In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.
Date: April 1, 2008
Creator: Long, P. E.; Yabusaki, S. B.; Meyer, P. D.; Murray, C. J. & N’Guessan, A. L.
Partner: UNT Libraries Government Documents Department

In Situ Causticizing for Black Liquor Gasification

Description: Black liquor gasification offers a number of attractive incentives to replace Tomlinson boilers but it also leads to an increase in the causticizing load. Reasons for this have been described in previous reports (FY04 ERC, et.al.). The chemistries have also been covered but will be reviewed here briefly. Experimental results of the causticizing reactions with black liquor are presented here. Results of the modeling work were presented in detail in the Phase 1 report. They are included in Table 2 for comparison but will not be discussed in detail. The causticizing agents were added to black liquor in the ratios shown in Table 1, mixed, and then spray-dried. The mixture ratios (doping levels) reflect amount calculated from the stoichiometry above to achieve specified conversions shown in the table. The solids were sieved to 63-90 microns for use in the entrained flow reactors. The firing conditions are shown in Table 2. Pictures and descriptions of the reactors can be found in the Phase 1 annual report. Following gasification, the solids (char) was collected and analyzed by coulometric titration (for carbonate and total carbon), and by inductively coupled plasma emission spectroscopy (ICP) for a wide array of metals.
Date: October 1, 2005
Creator: Sinquefield, Scott Alan
Partner: UNT Libraries Government Documents Department

Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation

Description: Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, “Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,” submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to 1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, 2) study the sediment air permeability influence on injection pressure, 3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, 4) test amendment distance (and mass) delivery by foam from the injection point, 5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and 6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate-scale tests will be used ...
Date: January 16, 2009
Creator: Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z. F.; Freedman, Vicky L.; Ankeny, Mark et al.
Partner: UNT Libraries Government Documents Department

Engineered Natural Geosorbents for In Situ Immobilization of DNAPLs and Heavy Metals

Description: Extensive subsurface contamination by dense non-aqueous phase liquid (DNAPL) organic solvents and heavy metals is common place at many DOE facilities. Poor performances and excessive costs have made traditional technologies and approaches less than satisfactory for remediation of such sites. It is increasingly apparent that marginal improvements in conventional methods and approaches will not suffice for clean up of many contaminated DOE sites. Innovative approaches using new and/or existing technologies in more efficient and cost-effective ways are thus urgently required.
Date: December 1, 2006
Creator: Weber, Walter J.; Fair, Gordon M. & Boyce, Earnest
Partner: UNT Libraries Government Documents Department

Development of an integrated, in-situ remediation technology. Topical report for task No. 6: lab-scale development of microbial degradation process, September 26, 1994--May 25, 1996

Description: Contamination in low permeability soils poses a significant technical challenge to in situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in situ treatments such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil, and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task No. 6 summarizes the results of a study of the potential for stimulating microbial reductive dehalogenation as part of the integrated in situ treatment process at the field experiment test site at DOE`s Gaseous Diffusion Plant in Paducah, Kentucky. A series of {open_quotes}microcosm bottle tests{close_quotes} were performed on samples of contaminated soil and groundwater taken from the Paducah site and spiked with trichloroethene (TCE). A number of bottles were set up, each spiked with a different carbon source in order to enhance the growth of different microbial subpopulations already present within the indigenous population in the soil. In addition, a series of bottle tests were completed with samples of the granular activated carbon (GAC) treatment zone material retrieved from the test site during the Paducah field experiment. In these tests, the GAC samples were used in place of the soil. Results of the soil-groundwater microcosms yielded a negative indication of the presence of dechlorinating bacteria at the site. However, charcoal (GAC) samples from one location in the test plot exhibited marked dechlorination with conversion of TCE to dichloroethene.
Date: April 1, 1997
Creator: Odom, J.M.
Partner: UNT Libraries Government Documents Department

An evaluation of in-situ bioremediation processes

Description: Remediation of petroleum hydrocarbons in groundwater was the primary focus in the initial application of in-situ bioremediation which, from its development in the 1970s, has grown to become one of the most promising technologies for the degradation of a wide variety of organic contaminants. The degradation of contaminants in subsurface soils is the current new focus of the technology. While the need for improvements in the technology does exist, the indisputable fact remains that this technology is by far the least expensive and that it has the capability to provide long term reduced levels of contaminants or long term complete remediation of contaminated sites. The aim of this paper is to disclose pertinent information related to current conditions and current feelings in the area of new research, novel applications, new government regulations, and an overview of new topics on the horizon that relate to the overall technology.
Date: August 1, 1996
Creator: Cole, L.L. & Rashidi, M.
Partner: UNT Libraries Government Documents Department

Use of serospecific biocarrier compositions for enhanced biodegradation and bioremediation of groundwater

Description: A composition and method for using the composition for degrading pollutants in-situ is presented. The composition comprises a biocarrier coated with an antigen-specific antibody that attracts and binds pollution-degrading antigens. The biocarrier, which is preferably in the form of glass microspheres, is coated with one or more strains of antibody. The antibody may be placed into the ground in or near the source of pollutants where it may attract antigens present and bind them, or the antibodies may be first exposed to the antigens and then placed in the ground. Alternatively, the coated biocarriers may be used to degrade pollutants in ground water pumped to the surface and through a biofilter containing the biocarriers. The remediated groundwater can then be returned to the soil.
Date: January 1, 1995
Creator: Fliermans, C.B.
Partner: UNT Libraries Government Documents Department

Principles and objectives of containment verification and performance monitoring and technology selection

Description: While a number of technologies or methods of subsurface imaging and monitoring exist, most require some adaptation to meet the site-specific objectives of a particular in-situ waste containment/stabilization verification and monitoring program. The selection of methods and their site-specific adaptation must be based on sound, scientific principles. Given this, specific information about the site and the objectives of the containment or remediation are required to design and implement an appropriate and effective verification and monitoring program. Site and technology information that must be considered and how it affects the selection and adaptation of monitoring technologies is presented. In general, this information includes the objectives of the containment or remediation, the verification and monitoring systems, and the physical properties of the site and the waste containment/stabilization system. The objectives of the containment or remediation and the verification and monitoring system must be defined to provide a goal for the technology developer`s design. The physical properties of the site and the waste containment/stabilization system are required to ensure the proper technology is selected. A conceptual framework and examples are given to demonstrate the impacts of these aspects on technology selection.
Date: February 1, 1997
Creator: Reichhardt, D.K.; Hart, A.T. & Betsill, J.D.
Partner: UNT Libraries Government Documents Department

Development of an integrated in-situ remediation technology. Draft topical report for Task {number_sign}7.2 entitled ``Field scale test`` (January 10, 1996--December 31, 1997)

Description: Contamination in low-permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task {number_sign}7.2 summarizes the Field Scale Test conducted by Monsanto Company, DuPont, and General Electric.
Date: November 1, 1997
Creator: Athmer, C.; Ho, S.V. & Hughes, B.M.
Partner: UNT Libraries Government Documents Department

A test to illustrate the effects of BioSolve on the mobility of contaminated soils

Description: Mountain States BioSolve manufactures products for in-situ bioremediation projects. One of their products, BioSolve, desorbs and emulsifies hydrocarbons in a contaminated substrate. BioSolve is a blend of water-based, biodegradable surfactants which were engineered as a clean-up and mitigation agent for hydrocarbon products. Its basic mechanism is to emulsify the hydrocarbon into small encapsulated particles in a water/oxygen-bearing solution, desorbing hydrocarbon molecules from soil particles. This allows bacteria to more effectively metabolize the contaminate. During desorption, Total Petroleum Hydrocarbons (TPH) levels may increase shortly after application due to the removal of contaminate from soil particles which increases the total recoverable hydrocarbon. This allows the hydrocarbon, in the pump and treat process, to become mobile, and thus carried with the water to the recovery wells where it can be removed. This testing does not address pump and treat technology but only the increased surface area for bioremediation enhancement.
Date: May 27, 1999
Creator: Jackson, Lorri M.
Partner: UNT Libraries Government Documents Department

Development of an integrated in-situ remediation technology. Topical report for Task No. 3.1 entitled, Emplacement technology - An evaluation of Phase IIa and alternative Lasagna{trademark} emplacement methods (September 26, 1994 - August 31, 1997)

Description: No abstract prepared.
Date: December 31, 1998
Creator: Landis, Richard C.; Griffith, Ronald J.; Shoemaker, Steven H.; Schultz, Dale S. & Quinton, Gary C.
Partner: UNT Libraries Government Documents Department

[A comprehensive signature biomarker analysis of the in-situ viable biomass, community composition, and nutritional status attributes of deep subsurface microbiota]. Final report

Description: The TAN sites contains subsurface sediment contaminated with trichloroethylene (TC). A suite of microbiological analyses, including ester-linked phospholipid fatty acid (PLFA) analysis, were performed to ascertain the microbial ecology associated with TCE degradation processes. The objective of the PLFA analyses were: (1) to determine the distribution of viable microbes throughout a vertical depth profile through the TCE plume, (2) determine the community composition of the viable extant microbiota and (3) relate the data derived from the PLFA analyses to other measures of the in situ microbiota as well as to the presence of TCE degradative products.
Date: September 1, 1998
Partner: UNT Libraries Government Documents Department

Microbial activities in deep subsurface environments

Description: Activities of microorganisms residing in terrestrial deep subsurface sediments were examined in forty-six sediment samples from three aseptically sampled boreholes. Radiolabeled time course experiments assessing in situ microbial activities were initiated within 30 minutes of core recovery. [{sup 14}C-1-] Acetate incorporation into lipids. [methyl-{sup 3}H-]thymidine incorporation into DNA, [{sup 14}C-2-]acetate and [{sup 14}C-U-]glucose mineralization in addition to microbial enrichment and enumeration studies were examined in surface and subsurface sediments. Surface soils contained the greatest biomass and activities followed by the shallow aquifer zones. Water saturated subsurface sediments exhibited three to four orders of magnitude greater activity and culturable microorganisms than the dense clay zones. Regardless of depth, sediments which contained more than 20% clays exhibited the lowest activities and culturable microorganisms.
Date: Spring 1988
Creator: Phelps, T. J.; Raione, E. G.; White, D. C. & Fliermans, C. B.
Partner: UNT Libraries Government Documents Department

GELCASTING: From laboratory development toward industrial production

Description: Gelcasting, a ceramic forming process, was developed to overcome some of the limitations of other complex-shape forming techniques such as injection molding and slip casting. In gelcasting, a concentrated slurry of ceramic powder in a solution of organic monomers is poured into a mold and then polymerized in-situ to form a green body in the shape of the mold cavity. Thus, it is a combination of polymer chemistry with slip processing and represents minimal departure from standard ceramic processing. The simplicity of the process has attracted industrial partners and by collaboration between them and the developers, the process is being advanced from the laboratory toward industrial production.
Date: July 1, 1995
Creator: Omatete, O.O.; Janney, M.A. & Nunn, S.D.
Partner: UNT Libraries Government Documents Department

Microbially Mediated Immobilization of Contaminants Through In Situ Biostimulation

Description: In most natural environments, a multitude of metabolic substrates are resent simultaneously. Organisms that can utilize uranium as a metabolic substrate for respiration also may have the ability to use a variety of other oxidized substrates as electron acceptors. Thus, these substrates are, in effect, competing for electrons that are being passed through the electron transport chain during respiration. To assess the feasibility of in situ immobilization of uranium in subsurface environments and to understand the cycling of uranium, it is necessary to discern the chemical and/or biological conditions dictating which terminal electron acceptor(s) will be utilized.
Date: July 31, 2003
Creator: Fendorf, Scott
Partner: UNT Libraries Government Documents Department


Description: This white paper summarizes the state of art of in-situ leaching of metals and minerals, and describes a new technology concept employing improved fragmentation of ores underground in order to prepare the ore for more efficient in-situ leaching, combined with technology to continuously improve solution flow patterns through the ore during the leaching process. The process parameters and economic benefits of combining the new concept with chemical and biological leaching are described. A summary is provided of the next steps required to demonstrate the technology with the goal of enabling more widespread use of in-situ leaching.
Date: September 22, 2004
Creator: O'Gorman, Glenn; Michaelis, Hans von & Olson, Gregory J.
Partner: UNT Libraries Government Documents Department

ECR plasma cleaning: an in-situ processing technique for RF cavities

Description: A condition for Electron Cyclotron Resonance (ECR) can be established inside a fully assembled RF cavity without the need for removing high-power couplers. As such, plasma generated by this process can be used as a final cleaning step, or as an alternative cleaning step in place of other techniques. Tests showed filtered dry air plasma can successfully remove sulfur particles on niobium surface while the surface oxygen content remains intact.
Date: January 1, 2008
Creator: Wu, G.; /Fermilab; Moeller, W-D.; /DESY; Antoine, C.; /Saclay et al.
Partner: UNT Libraries Government Documents Department


Description: Regulatory protocols generally recognize that destructive processes are the most effective mechanisms that support natural attenuation of chlorinated solvents. In many cases, these destructive processes will be biological processes and, for chlorinated compounds, will often be reductive processes that occur under anaerobic conditions. The existing EPA guidance (EPA, 1998) provides a list of parameters that provide indirect evidence of reductive dechlorination processes. In an effort to gather direct evidence of these processes, scientists have identified key microorganisms and are currently developing tools to measure the abundance and activity of these organisms in subsurface systems. Drs. Edwards and Luffler are two recognized leaders in this field. The research described herein continues their development efforts to provide a suite of tools to enable direct measures of biological processes related to the reductive dechlorination of TCE and PCE. This study investigated the strengths and weaknesses of the 16S rRNA gene-based approach to characterizing the natural attenuation capabilities in samples. The results suggested that an approach based solely on 16S rRNA may not provide sufficient information to document the natural attenuation capabilities in a system because it does not distinguish between strains of organisms that have different biodegradation capabilities. The results of the investigations provided evidence that tools focusing on relevant enzymes for functionally desired characteristics may be useful adjuncts to the 16SrRNA methods.
Date: November 17, 2006
Creator: Vangelas, K; ELIZABETH EDWARDS, E; FRANK LOFFLER, F & Brian02 Looney, B
Partner: UNT Libraries Government Documents Department

Field grouting summary report on the WAG 4 seeps 4 and 6 removal action project, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3. Appendixes E and F

Description: During the summer of 1996, a unique multi-phase, multi-stage, low-pressure permeation grouting pilot program was performed inside portions of four unlined waste disposal trenches at Waste Area Grouping (WAG) 4 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The project was deemed a non-time-critical removal action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); however, due to a history of heavy precipitation in the fall, the schedule was fast-tracked to meet an October 31, 1996 grouting completion date. The technical objective of the removal action was to reduce the off-site transport of j Strontium 90 ({sup 90}Sr) by grouting portions of four waste disposal trenches believed to be responsible for over 70 percent of the {sup 90}Sr leaving the site. A goal of the grouting operation was to reduce the average in situ hydraulic conductivity of the grouted waste materials to a value equal to or less than 1 x 10{sup -6} cm/sec. This target hydraulic conductivity value was established to be at least two orders of magnitude lower than that of the surrounding natural ground.
Date: May 1997
Partner: UNT Libraries Government Documents Department

Effect of environmental variables upon in-situ gamma spectrometry data

Description: The Fernald Environmental Management Project (FEMP) is a US Department of Energy site that is undergoing total remediation and closure. Fernald is a former uranium refinery which produced high quality uranium metal. Soil in the Fernald site is pervasively contaminated with uranium and secondarily with thorium and radium isotopes. In-situ gamma spectrometry is routinely utilized in soil excavation operations at Fernald to provide high quality and timely analytical data on radionuclide contaminants in soil. To understand the effect of environmental conditions upon in-situ gamma spectrometry measurements, twice daily measurements were made, weather permitting, with a tripod-mounted high purity germanium detector (HPGe) at a single field location (field quality control station) at the Fernald Environmental Management Project. Such measurements are the field analogue of a laboratory control standard. The basic concept is that measurement variations over an extended period of time at a single location can be related to environmental parameters. Trends, peaks, and troughs in data might be correlative to both long-term and short-term environmental conditions. In this paper environmental variables/ conditions refer to weather related phenomena such as soil moisture, rainfall, atmospheric humidity, and atmospheric temperature.
Date: June 1, 1999
Creator: Sutton, C.
Partner: UNT Libraries Government Documents Department

Effect of dilution and contaminants on strength and hydraulic conductivity of sand grouted with colloidal silica gel

Description: Colloidal silica (CS) is a low-viscosity liquid that can be made to gel by addition of brine. This property allows it to be injected into, or mixed with, soil, so that after gelling the colloidal silica blocks the pore space in the soil and forms a barrier to the flow of contaminated groundwater or non-aqueous liquids (NAPLs). Gelled-in-place CS was first studied for the petroleum industry and later for protecting groundwater quality. Noll investigated the use of colloidal silica diluted so that its solids content was reduced from 30% (a typical nominal value for material as delivered) to values as low as 5%. The more dilute colloids could still be made to gel, although more slowly, and the resulting gel was weaker. Because the proposed application of colloidal silica grout involves emplacing it in the subsurface by permeation, jet grouting, or soil mixing where its role as a barrier will be to resist flow of contaminants, the effects of these contaminants on the properties of the grouted soil is also of interest. This work comprised four tasks. In Task 1, samples of grouted sand were prepared with a range of CS dilutions, for measurement of hydraulic conductivity and unconfined-compressive strength. In Task 2, these properties were measured on samples of grouted sand that incorporated 5% volumetric saturation of NAPLs. In Task 3, samples, prepared without any contaminants, were immersed in contaminant liquids and tested after 30 and 90 days. Task 4 was added because NAPL contamination in the samples of Tasks 2 and 3 impelled modifications in the test methods, and comparison of the results of Task 2 and Task 1 suggested that these modifications had introduced errors. In Task 4, samples were tested both ways, to confirm that in Tasks 2 and 3 strength was underestimated and hydraulic conductivity ...
Date: October 1, 1996
Creator: Persoff, P.; Apps, J.A. & Moridis, G.J.
Partner: UNT Libraries Government Documents Department