789 Matching Results

Search Results

Advanced search parameters have been applied.

Radiative Properties of High Wire Number Tungsten Arrays with Implosion Times up to 250 ns

Description: High wire number, 25-mm diameter tungsten wire arrays have been imploded on the 8-MA Saturn generator, operating in a long-pulse mode. By varying the mass load from 710 to 6140 ps/cm, implosion times of 130 to 250 ns have been obtained with implosion velocities of 50 to 25 cn-dys, respectively. These z-pinch implosions produced plasmas with millimeter diameters that radiated 600 to 800 kJ of x-rays, with powers of 20 to 49 TW; the corresponding pulse widths were 19 to 7.5 ns, with risetimes ranging from 6.5 to 4.0 ns. These powers and pulse widths are similar to those achieved with 50 ns implosion times on Saturn. Two-dimensional, radiation- magnetohydrodynamic calculations indicate that the imploding shells in these long implosion time experiments are comparable in width to those in the short pulse cases. This can only be due to lower initial perturbations. A heuristic wire array model suggests that the reduced perturbations, in the long pulse cases, may be due to the individual wire merger occurring well before the acceleration of the shell. The experiments and modeling suggest that 150 to 200 ns implosion time z-pinches could be employed for high-power, x-ray source applications.
Date: February 2, 1999
Creator: Beg, F.N.; Coverdale, C.A.; Deeney, C.; Douglas, M.R.; Haines, M.G.; Peterson, D.L. et al.
Partner: UNT Libraries Government Documents Department

Design Calculations For NIF Convergent Ablator Experiments

Description: The NIF convergent ablation tuning effort is underway. In the early experiments, we have discovered that the design code simulations over-predict the capsule implosion velocity and shock flash rhor, but under-predict the hohlraum x-ray flux measurements. The apparent inconsistency between the x-ray flux and radiography data implies that there are important unexplained aspects of the hohlraum and/or capsule behavior.
Date: October 25, 2011
Creator: Olson, R E; Hicks, D G; Meezan, N B; Callahan, D A; Landen, O L; Jones, O S et al.
Partner: UNT Libraries Government Documents Department

Towards breaking temperature equilibrium in multi-component Eulerian schemes

Description: We investigate the effects ofthermal equilibrium on hydrodynamic flows and describe models for breaking the assumption ofa single temperature for a mixture of components in a cell. A computational study comparing pressure-temperature equilibrium simulations of two dimensional implosions with explicit front tracking is described as well as implementation and J-D calculations for non-equilibrium temperature methods.
Date: January 1, 2009
Creator: Grove, John W & Masser, Thomas
Partner: UNT Libraries Government Documents Department

Simulations of implosions with a 3D, parallel, unstructured-grid, radiation-hydrodynamics code

Description: An unstructured-grid, radiation-hydrodynamics code is used to simulate implosions. Although most of the problems are spherically symmetric, they are run on 3D, unstructured grids in order to test the code�s ability to maintain spherical symmetry of the converging waves. Three problems, of increasing complexity, are presented. In the first, a cold, spherical, ideal gas bubble is imploded by an enclosing high pressure source. For the second, we add non-linear heat conduction and drive the implosion with twelve laser beams centered on the vertices of an icosahedron. In the third problem, a NIF capsule is driven with a Planckian radiation source.
Date: December 28, 1998
Creator: Kaiser, T. B.; Milovich, J. L.; Prasad, M. K.; Rathkopf, J. & Shestakov, A. I.
Partner: UNT Libraries Government Documents Department

{open_quotes}Bubble fusion{close_quotes}: Preliminary estimates of spherical micro-implosions in cavitating liquids

Description: Liquids irradiated with intense ultrasonic waves can generate small cavities or bubbles. Upon nonlinear expansion to a state of disequilibrium, wherein the externally imposed hydrostatic pressure far exceeds that of entrapped non-condensable gas, these bubbles undergo a rapid and violent collapse. This collapse, if symmetric, can generate high pressures and temperatures through a number of possible mechanisms. The simplest and oldest explanation suggests a focusing of the kinetic energy of all the surrounding liquid onto the collapsing bubble and the subsequent heating of entrapped gases under either adiabatic or isothermal conditions. Although induced by externally imposed millisecond pressure oscillations, these collapses can occur on sub-microsecond timescales and are accompanied by picosecond light emissions; this combination of sound and light is called sonoluminescence. Recent explanations of observed high temperatures and picosecond radiation pulses accompanying such collapses are based on the interaction of multiple shock waves that are launched off the inward cavity wall. Other potential explanations invoke dipole emissions induced by intermolecular collisions or the release of Casimir energy when a dielectric hole is filled. Conjectures have been made that the processes responsible for sonoluminescence may be extended to generated conditions where thermonuclear fusion might occur. Such an achievement would extend scientific interest in sonoluminescence out of a purely chemical context to include the study of matter subjected to more extreme conditions. The main goal of this {open_quotes}scoping{close_quotes} study is to understand better conditions where deuterium-tritium fusion might be observed in conjunction with micro-implosions in cavitating liquids; prognoses of fusion application at this point are unintended.
Date: February 1, 1995
Creator: Krakowski, R.A.
Partner: UNT Libraries Government Documents Department

Modeling and analysis of the high energy liner experiment, HEL-1

Description: A high energy, massive liner experiment, driven by an explosive flux compressor generator, was conducted at VNIIEF firing point, Sarov, on August 22, 1996. We report results of numerical modeling and analysis we have performed on the solid liner dynamics of this 4.0 millimeter thick aluminum liner as it was imploded from an initial inner radius of 236 mm onto a Central Measuring Unit (CMU), radius 55 mm. Both one- and two-dimensional MHD calculations have been performed, with emphasis on studies of Rayleigh-Taylor instability in the presence of strength and on liner/glide plane interactions. One-dimensional MHD calculations using the experimental current profile confirm that a peak generator current of 100-105 MA yields radial liner dynamics which are consistent with both glide plane and CMU impact diagnostics. These calculations indicate that the liner reached velocities of 6.9-7.5 km/s before CMU impact. Kinetic energy of the liner, integrated across its radial cross-section, is between 18-22 MJ. Since the initial goal was to accelerate the liner to at least 20 MJ, these calculations are consistent with overall success. Two-dimensional MHD calculations were employed for more detailed comparisons with the measured data set. The complete data set consisted of over 250 separate probe traces. From these data and from their correlation with the MHD calculations, we can conclude that the liner deviated from simple cylindrical shape during its implosion. Two-dimensional calculations have clarified our understanding of the mechanisms responsible for these deformations. Many calculations with initial outer edge perturbations have been performed to assess the role of Rayleigh-Taylor instability. Perturbation wavelengths between 4-32 mm and amplitudes between 8-240 {mu}m have been simulated with the experimental current profiles. When strength is omitted short wavelengths are observed to grow to significant levels; material strength stabilizes such modes in the calculations.
Date: August 1, 1997
Creator: Faehl, R.J.; Sheehey, P.T. & Reinovsky, R.E.
Partner: UNT Libraries Government Documents Department

Z-Pinch Driven Isentropic Compression for Inertial Fusion

Description: The achievement of high gain with inertial fusion requires the compression of hydrogen isotopes to high density and temperatures. High densities can be achieved most efficiently by isentropic compression. This requires relatively slow pressure pulses on the order of 10-20 nanoseconds; however, the pressure profile must have the appropriate time. We present 1-D numerical simulations that indicate such a pressure profile can be generated by using pulsed power driven z pinches. Although high compression is calculated, the initial temperature is too low for ignition. Ignition could be achieved by heating a small portion of this compressed fuel with a short (-10 ps) high power laser pulse as previously described. Our 1-D calculations indicate that the existing Z-accelerator could provide the driving current (-20 MA) necessary to compress fuel to roughly 1500 times solid density. At this density the required laser energy is approximately 10 kJ. Multidimensional effects such as the Rayleigh-Taylor were not addressed in this brief numerical study. These effects will undoubtedly lower fuel compression for a given chive current. Therefore it is necessary to perform z-pinch driven compression experiments. Finally, we present preliminary experimental data from the Z-accelerator indicating that current can be efficiently delivered to appropriately small loads (- 5 mm radius) and that VISAR can be used measure high pressure during isentropic compression.
Date: February 1, 1999
Creator: Asay, J.R.; Hall, C.A.; Holland, K.G.; Slutz, S.A.; Spielman, R.B. & Stygar, W.A.
Partner: UNT Libraries Government Documents Department

Two-dimensional modeling of magnetically imploded liners

Description: Magnetically imploded massive cylindrical liner drivers have been studied in two-dimensions for low, intermediate and high energy pulsed power systems. The simulations have been carried out using a resistive Eulerian magnetohydrodynamics computational model which includes material strength, and models the interactions between the imploding liner and the electrode walls. The computations simulate the generation of perturbations and their subsequent growth during the implosion. At low energies a solid liner remains in the plastic regime, reaching an inner cylindrical target with velocities of a few mm per {mu}s. At higher energies (where one-dimensional models predict implosion velocities of order 1 cm/{mu}s or more) resistive heating of the liner results in melting, and the effects of magnetically driven instabilities become important. We discuss the two-dimensional issues which arise in these systems. These include: the onset of perturbations associated with the motion of the liner along the electrodes; the growth of instabilities in liquid layers; and the suppression of instability growth during the implosion by maintaining a solid inner layer. Studies have been made of liners designed for the Pegasus capacitor bank facility (currents in the 5 - 12 MA regime), and for the Procyon high explosive system (currents in the 20 MA regime). This work focus on the design and performance of the first Pegasus composite megabar liner experiment.
Date: November 1, 1996
Creator: Atchison, W.L.; Bowers, R.L.; Brownell, J.H. & Lee, H.
Partner: UNT Libraries Government Documents Department

Magnetized targets for fast z-pinch implosions: a spectrum of possibilities

Description: In this brief communication, we discuss various plasma configurations that can be adiabatically compressed by an imploding liner and produce fusion-grade plasma near the liner turn around point. Our prime interest will be discussion of the ways of forming initial plasma configurations and discussion of the ways of imploding them in a 3D fashion.
Date: April 23, 1999
Creator: Ryutov, D D
Partner: UNT Libraries Government Documents Department

ZX Pulsed-Power Design

Description: ZX is a new z-pinch accelerator planned as the next generation z-pinch driver at SNL, and as an intermediate step towards X-1. It is planned to drive either a single 50 MA z-pinch load, or two 25 to 30 MA z pinches. Three designs for the ZX accelerator are presented. All require 7 to 8 MV at the insulator stack to drive the z-pinch load to implosion in 100 to 120 ns. Two of the designs are based on the Z accelerator, and use water-line technology; a transit-time-isolated water adder, and a water transformer. The third design uses inductive-voltage adders in water. They also describe a low-inductance insulator stack design that helps minimize voltage requirements. This design is evaluated for water and vacuum break-down using JCM, THM, and magnetic-flashover-inhibition criteria.
Date: August 2, 1999
Creator: Corley, J.P.; Johnson, D.L.; McDaniel, D.H.; Spielman, R.B.; Struve, K.W. & Stygar, W.A.
Partner: UNT Libraries Government Documents Department

Rayleigh-Taylor and Richtmyer-Meshkov Instabilities and Mixing in Stratified Cylindrical Shells

Description: We study the linear stability of an arbitrary number N of cylindrical concentric shells undergoing a radial implosion or explosion.We derive the evolution equation for the perturbation {eta}{sub i} at interface i; it is coupled to the two adjacent interfaces via {eta}{sub i{+-}1}. For N=2, where there is only one interface, we verify Bell's conjecture as to the form of the evolution equation for arbitrary {rho}{sub 1} and {rho}{sub 2}, the fluid densities on either side of the interface. We obtain several analytic solutions for the N=2 and 3 cases. We discuss freeze-out, a phenomenon that can occur in all three geometries (planar, cylindrical, or spherical), and ''critical modes'' that are stable for any implosion or explosion history and occur only in cylindrical or spherical geometries. We present numerical simulations of possible gelatin-ring experiments illustrating perturbation feedthrough from one interface to another. We also develop a simple model for the evolution of turbulent mix in cylindrical geometry and define a geometrical factor G as the ratio h{sub cylindrical}/h{sub planar} between cylindrical and planar mixing layers. We find that G is a decreasing function of R/R{sub o}, implying that in our model h{sub cylindrical} evolves faster (slower) than h{sub planar} during an implosion (explosion).
Date: April 15, 2004
Creator: Mikaelian, K O
Partner: UNT Libraries Government Documents Department

Plasma production from shock compression of condensed matter

Description: The experimental investigation of HE-driven, phased, cylindrical, SS liner implosion has yielded many interesting results. Plasma and radiation are found to be copiously produced. Plasmas with velocity up to 17 cm/{mu}s are observed. The temperature in the expansion surface reaches 8 - 10 eV and stays hot for tens of microseconds. The signatures of plasma interactions with the imploding wall and the glass port are clearly identified. Finally, a cluster of cooler but still self-luminous, high-density debris is observed to travel at 1.8 cm/{mu}s. Additional experiments were carried out to study the plasma flow and reconvergence inside the liner cavity by inserting a diverting disk along the axis of implosion. Significant emission of vuv and soft x-rays is detected. All the experiments are guided by the calculations using the MESA 2D hydrocode and the results agree with many of the predictions.
Date: September 1, 1995
Creator: Tan, T.H. & Marsh, S.P.
Partner: UNT Libraries Government Documents Department

Linear and nonlinear Rayleigh-Taylor growth at strongly convergent spherical interfaces

Description: Recent attention has focused on the effect of spherical convergence on the nonlinear phase of Rayleigh-Taylor growth. For instability growth on spherically converging interfaces, modifications to the predictions of the Layzer model for the secular growth of a single, nonlinear mode have been reported [D. S. Clark and M. Tabak, Phys. Rev. E 72, 0056308 (2005).]. However, this model is limited in assuming a self-similar background implosion history as well as only addressing growth from a perturbation of already nonlinearly large amplitude. Additionally, only the case of single-mode growth was considered and not the multimode growth of interest in applications. Here, these deficiencies are remedied. First, the connection of the recent nonlinear results including convergence to the well-known results for the linear regime of growth is demonstrated. Second, the applicability of the model to more general implosion histories (i.e., not self-similar) is shown. Finally, to address the case of multimode growth with convergence, the recent nonlinear single mode results are combined with the Haan model formulation for weakly nonlinear multimode growth. Remarkably, convergence in the nonlinear regime is found not to modify substantially the multimode predictions of Haan's original model.
Date: December 22, 2005
Creator: Clark, D S & Tabak, M
Partner: UNT Libraries Government Documents Department

Inference of ICF Implosion Core Mix using Experimental Data and Theoretical Mix Modeling

Description: The mixing between fuel and shell materials in Inertial Confinement Fusion (ICF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model performed well in predicting trends in the width of the mix layer. With these results, we have contributed to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increased our confidence in the methods used to extract mixing information from experimental data.
Date: April 30, 2008
Creator: Welser-Sherrill, L; Haynes, D A; Mancini, R C; Cooley, J H; Tommasini, R; Golovkin, I E et al.
Partner: UNT Libraries Government Documents Department

Inference of ICF implosion core mix using experimental data and theoretical mix modeling

Description: The mixing between fuel and shell materials in Inertial Confinement Fusion (lCF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model predicted trends in the width of the mix layer as a function of initial shell thickness. These results contribute to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increasing confidence in the methods used to extract mixing information from experimental data.
Date: January 1, 2009
Creator: Sherrill, Leslie Welser; Haynes, Donald A; Cooley, James H; Sherrill, Manolo E; Mancini, Roberto C; Tommasini, Riccardo et al.
Partner: UNT Libraries Government Documents Department

Oppenheimer&Groves : The duality that led to Trinity /.

Description: The alliance of J. Robert Oppenheimer, scientist, and Leslie R. Groves, military leader, is often interpreted as the classic example of the clash between the academic mind and the military style. Evidence suggests, instead, that it was a collaboration that led to the dawn of the nuclear age. Instead of a clash, it was collaboration and an implosion of the diverse talents needed for the success of this project. Discussion of these flawed and fascinating individuals still ignites controversy today. This presentation will explore the backgrounds and personalities of these two men and their work together to accomplish their mission. Was the aftermath inevitable, given a relationship based on respect, but perhaps not trust? The genesis of the modern military-industrial complex rested on the genius of these two men, though they personify two distinct American sub-cultures. What lessons can be drawn from their wartime and post-war relationship? What analogies can be drawn for current American values?
Date: January 1, 2001
Creator: Connaughton, T. G. (Theresa G.) & Smith, S. E. (Sharon E.)
Partner: UNT Libraries Government Documents Department

Nonuniformity for rotated beam illumination in directly driven heavy-ion fusion

Description: A key issue in heavy-ion beam inertial confinement fusion is target interaction, especially implosion symmetry. In this paper the 2D beam irradiation nonuniformity on the surface of a spherical target is studied. This is a first step to studies of 3D dynamical effects on target implosion. So far non-rotated beams have been studied. Because normal incidence may increase Rayleigh-Taylor instabilities, it has been suggested to rotate beams (to increase average uniformity) and hit the target tangentially. The level of beam irradiation uniformity, beam spill and normal incidence is calculated in this paper. In Mathematica the rotated beams are modeled as an annular integrated Gaussian beam. To simplify the chamber geometry, the illumination scheme is not a 4{pi} system, but the beams are arranged on few polar rings around the target. The position of the beam spot rings is efficiently optimized using the analytical model. The number of rings and beams, rotation radii and widths are studied to optimize uniformity and spilled intensity. The results demonstrate that for a 60-beam system on four rings Peak-To-Valley nonuniformities of under 0.5% are possible.
Date: January 2, 2009
Creator: Runge, J. & Logan, B.G.
Partner: UNT Libraries Government Documents Department

Multispectral X-Ray Imaging With A Pinhole Array And A Flat Bragg Mirror

Description: We describe a multiple monochromatic x-ray imager designed for implosion experiments. This instrument uses an array of pinholes in front of a flat multilayered Bragg mirror to provide many individual quasi-monochromatic x-ray pinhole images spread over a wide spectral range. We discuss design constraints and optimizations, and we discuss the specific details of the instrument we have used to obtain temperature and density maps of implosion plasmas.
Date: March 17, 2005
Creator: Koch, J A; Barbee, Jr., T W; Izumi, N; Tommasini, R; Welser, L A; Mancini, R C et al.
Partner: UNT Libraries Government Documents Department

NIF Capsule Sensitivity to Drive Asymmetry

Description: We examine 300 eV ICF capsules with ablators of Ge-doped CH, and consider the 2-D parameter space of ablator thickness and DT-ice thickness. At each point in this parameter space, we optimize the drive for a low entropy implosion. At five points in this parameter space, we run 2-D sensitivity studies with radiation drive asymmetries with both constant and time-varying Legendre coefficient P{sub 2}, P{sub 4}, P{sub 6}, and P{sub 8} to determine how much asymmetry the capsule can tolerate before the yield degrades substantially. We find that the thinner capsules with higher implosion velocities are more tolerant of drive asymmetries.
Date: December 17, 2003
Creator: Haan, S; Suter, L; Pollaine, S; Herrmann, M; Amendt, P & Jones, O
Partner: UNT Libraries Government Documents Department

Laser Fusion: The First Ten Years 1962-1972

Description: This account of the beginning of the program on laser fusion at Livermore in 1962, and its subsequent development during the decade ending in 1972, was originally prepared as a contribution to the January 1991 symposium 'Achievements in Physics' honoring Professor Keith Brueckner upon his retirement from the University of San Diego at La Jolla. It is a personal recollection of work at Livermore from my vantage point as its scientific leader, and of events elsewhere that I thought significant. This period was one of rapid growth in which the technology of high-power short-pulse lasers needed to drive the implosion of thermonuclear fuel to the temperature and density needed for ignition was developed, and in which the physics of the interaction of intense light with plasmas was explored both theoretically and experimentally.
Date: July 6, 2006
Creator: Kidder, R. E.
Partner: UNT Libraries Government Documents Department

Simple scaling model for exploding pusher targets

Description: A simple model has been developed which when normalized by experiment or Lasnex calculations can be used to scale neutron yields for variations in laser input power and pulse length and target radius and wall thickness. The model also illucidates some of the physical processes occurring in this regime of laser fusion experiments. Within certain limitations on incident intensity and target geometry, the model scales with experiments and calculations to within a factor of two over six decades in neutron yield.
Date: November 4, 1977
Creator: Storm, E.K.; Larsen, J.T.; Nuckolls, J.H.; Ahlstrom, H.G. & Manes, K.R.
Partner: UNT Libraries Government Documents Department