11 Matching Results

Search Results

Advanced search parameters have been applied.

Observations on Faults and Associated Permeability Structures in Hydrogeologic Units at the Nevada Test Site

Description: Observational data on Nevada Test Site (NTS) faults were gathered from a variety of sources, including surface and tunnel exposures, core samples, geophysical logs, and down-hole cameras. These data show that NTS fault characteristics and fault zone permeability structures are similar to those of faults studied in other regions. Faults at the NTS form complex and heterogeneous fault zones with flow properties that vary in both space and time. Flow property variability within fault zones can be broken down into four major components that allow for the development of a simplified, first approximation model of NTS fault zones. This conceptual model can be used as a general guide during development and evaluation of groundwater flow and contaminate transport models at the NTS.
Date: March 30, 2009
Creator: Prothro, Lance B.; Drellack, Sigmund L.; Haugstad, Dawn N.; Huckins-Gang, Heather E. & Townsend, Margaret J.
Partner: UNT Libraries Government Documents Department

Integrated Hydrogeological Model of the General Separations Area, Vol. 2, Rev. 1

Description: The 15 mi2 General Separations Area (GSA) contains more than 35 RCRA and CERCLA waste units, and is the focus of numerous ongoing and anticipated contaminant migration and remedial alternatives studies. To meet the analysis needs of GSA remediation programs, a groundwater flow model of the area based on the FACT code was developed. The model is consistent with detailed characterization and monitoring data through 1996. Model preprocessing has been automated so that future updates and modifications can be performed quickly and efficiently. Most remedial action scenarios can be explicitly simulated, including vertical recirculation wells, vertical barriers, surface caps, pumping wells at arbitrary locations, specified drawdown within well casings (instead of flowrate), and wetland impacts of remedial actions. The model has a fine scale vertical mesh and heterogeneous conductivity field, and includes the vadose zone. Therefore, the model is well suited to support subsequent contaminant transport simulations. the model can provide a common framework for analyzing groundwater flow, contaminant migration, and remedial alternatives across Environmental Restoration programs within the GSA.
Date: April 1, 1999
Partner: UNT Libraries Government Documents Department

Combined Estimation of Hydrogeologic Conceptual Model, Parameter, and Scenario Uncertainty with Application to Uranium Transport at the Hanford Site 300 Area

Description: This report to the Nuclear Regulatory Commission (NRC) describes the development and application of a methodology to systematically and quantitatively assess predictive uncertainty in groundwater flow and transport modeling that considers the combined impact of hydrogeologic uncertainties associated with the conceptual-mathematical basis of a model, model parameters, and the scenario to which the model is applied. The methodology is based on a n extension of a Maximum Likelihood implementation of Bayesian Model Averaging. Model uncertainty is represented by postulating a discrete set of alternative conceptual models for a site with associated prior model probabilities that reflect a belief about the relative plausibility of each model based on its apparent consistency with available knowledge and data. Posterior model probabilities are computed and parameter uncertainty is estimated by calibrating each model to observed system behavior; prior parameter estimates are optionally included. Scenario uncertainty is represented as a discrete set of alternative future conditions affecting boundary conditions, source/sink terms, or other aspects of the models, with associated prior scenario probabilities. A joint assessment of uncertainty results from combining model predictions computed under each scenario using as weight the posterior model and prior scenario probabilities. The uncertainty methodology was applied to modeling of groundwater flow and uranium transport at the Hanford Site 300 Area. Eight alternative models representing uncertainty in the hydrogeologic and geochemical properties as well as the temporal variability were considered. Two scenarios represent alternative future behavior of the Columbia River adjacent to the site were considered. The scenario alternatives were implemented in the models through the boundary conditions. Results demonstrate the feasibility of applying a comprehensive uncertainty assessment to large-scale, detailed groundwater flow and transport modeling and illustrate the benefits of the methodology I providing better estimates of predictive uncertiay8, quantitative results for use in assessing risk, and an improved understanding ...
Date: July 30, 2007
Creator: Meyer, Philip D.; Ye, Ming; Rockhold, Mark L.; Neuman, Shlomo P. & Cantrell, Kirk J.
Partner: UNT Libraries Government Documents Department

The Hydrogeologic Character of the Lower Tuff Confining Unit and the Oak Springs Butte Confining Unit in the Tuff Pile Area of Central Yucca Flat

Description: The lower tuff confining unit (LTCU) in the Yucca Flat Corrective Action Unit (CAU) consists of a monotonous sequence of pervasively zeolitized volcanic tuff (i.e., mostly bedded with lesser nonwelded to poorly welded tuff; not fractured) (Bechtel Nevada, 2006). The LTCU is an important confining unit beneath Yucca Flat because it separates the alluvial and volcanic aquifers, where many underground nuclear tests were conducted, from the regional lower carbonate aquifer. Recent sub-CAU-scale modeling by Los Alamos National Laboratory in the Tuff Pile area of Yucca Flat (Boryta, et al., in review) includes postulated low-porosity, high-permeability zones (i.e., fractured welded-tuff aquifers) within the LTCU. This scenario indicates that such postulated low-porosity, high-permeability zones could provide fast-path lateral conduits to faults, and eventually to the lower carbonate aquifer. A fractured and faulted lower carbonate aquifer is postulated to provide a flow path(s) for underground test-derived contaminants to potential offsite receptors. The ramifications of such a scenario are obvious for groundwater flow and contaminant migration beneath Yucca Flat. This paper describes the reasoning for not including postulated low-porosity, high-permeability zones within the LTCU in the Tuff Pile area or within the LTCU in the Yucca Flat CAU-scale model. Both observational and analytical data clearly indicate that the LTCU in the Tuff Pile area consists of pervasively zeolitic, nonwelded to poorly welded tuffs that are classified as tuff confining units (i.e., high-porosity, low-permeability). The position regarding the LTCU in the Tuff Pile area is summarized as follows: • The LTCU in the Tuff Pile area consists of a monotonous sequence of predominantly zeolitic nonwelded to poorly welded tuffs, and thus is accurately characterized hydrogeologically as a tuff confining unit (aquitard) in the Yucca Flat-Climax Mine hydrostratigraphic framework model (Bechtel Nevada, 2006). • No welded-tuff (or lava-flow aquifers), referred to as low-porosity, high-permeability zones in ...
Date: July 30, 2010
Creator: Sigmund L. Drellack, Jr., Lance B. Prothro, Jose L. Gonzales, and Jennifer M. Mercadante
Partner: UNT Libraries Government Documents Department

Chemical Constituents in Ground Water from 39 Selected Sites with an Evaluation of Associated Quality Assurance Data, Idaho National Engineering and Environmental Laboratory and Vicinity, Idaho

Description: This report presents a compilation of water-quality data along with an evaluation of associated quality assurance data collected during 1990-94 from the Snake River Plain aquifer and two springs located in areas that provide recharge to the Snake River Plain aquifer. The data were collected as part of the continuing hydrogeologic investigation at the Idaho National Engineering and Environmental Laboratory (INEEL). This report is the third in a series of four reports and presents data collected to quantitatively assess the natural geochemical system at the INEEL. Ground-water quality data - collected during 1990-94 from 39 locations in the eastern Snake River Plain - are presented.
Date: August 1, 1999
Creator: Knobel, L. L.; Bartholomay, R. C.; Tucker, B. J.; Williams, L. M. & Cecil, L. D.
Partner: UNT Libraries Government Documents Department

Characterization of Contaminant Transport Using Naturally-Occurring U-Series Disequilibria

Description: Study the migration of nuclear waste contaminants in subsurface fractured systems using naturally occurring uranium and thorium-series radionuclides as tracers under in-situ physico-chemical and hydrogeologic conditions. Radioactive disequilibria among members of these decay-series nuclides can provide information on the rates of adsorption-desorption and transport of contaminants as well as on fluid transport and rock dissolution in a natural setting.
Date: June 1, 2001
Creator: KU, TEH-LUNG
Partner: UNT Libraries Government Documents Department

Field Studies of Geothermal Reservoirs Rio Grande Rift, New Mexico

Description: The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity that is found in the Basin and Range is absent because the rift is located on cratonic crust with a thin and well-characterized Phanerozoic stratigraphy and tectonic history. On the other hand, the Neogene thermo-tectonic history of the rift has many parallels with the Basin and Range to the west. The geology of the southern Rio Grande rift is among the best characterized of any rift system in the world. Also, most geologic maps for the region are rather unique in that detailed analyses of Quaternary stratigraphic and surficial unit are added in concert with the details of bedrock geology. Pleistocene to Holocene entrenchment of the Rio Grande and tributaries unroofs the alteration signatures and permeability attributes of paleo outflow plumes and upflow zones, associated with present-day, but hidden or ''blind,'' hydrothermal systems at Rincon and San Diego Mountain.
Date: July 30, 2002
Creator: Witcher, James C
Partner: UNT Libraries Government Documents Department

Chlorine-36 in Water, Snow, and Mid-Latitude Glacial Ice of North America: Meteoric and Weapons-Tests Production in the Vicinity of the Idaho National Engineering and Environmental Laboratory, Idaho

Description: Measurements of chlorine-36 (36Cl) were made for 64 water, snow, and glacial-ice and -runoff samples to determine the meteoric and weapons-tests-produced concentrations and fluxes of this radionuclide at mid-latitudes in North America. The results will facilitate the use of 36Cl as a hydrogeologic tracer at the Idaho National Engineering and Environmental Laboratory (INEEL). This information was used to estimate meteoric and weapons-tests contributions of this nuclide to environmental inventories at and near the INEEL. The data presented in this report suggest a meteoric source 36Cl for environmental samples collected in southeastern Idaho and western Wyoming if the concentration is less than 1 x 10 7 atoms/L. Additionally, concentrations in water, snow, or glacial ice between 1 x 10 7 and 1 x 10 8 atoms/L may be indicative of a weapons-tests component from peak 36Cl production in the late 1950s. Chlorine-36 concentrations between 1 x 10 8 and 1 x 10 9 atoms/L may be representative of re-suspension of weapons-tests fallout airborne disposal of 36Cl from the INTEC, or evapotranspiration. It was concluded from the water, snow, and glacial data presented here that concentrations of 36Cl measured in environmental samples at the INEEL larger than 1 x 10 9 atoms/L can be attributed to waste-disposal practices.
Date: 1999
Creator: Cecil, L. DeWayne; Green, Jaromy R.; Vogt, Stephan; Frape, Shaun K.; Davis, Stanley N.; Cottrell, Gary L. et al.
Partner: UNT Libraries Government Documents Department

Large-Scale Transport Model Uncertainty and Sensitivity Analysis: Distributed Sources in Complex Hydrogeologic Systems

Description: The Underground Test Area (UGTA) Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is in the process of assessing and developing regulatory decision options based on modeling predictions of contaminant transport from underground testing of nuclear weapons at the Nevada Test Site (NTS). The UGTA Project is attempting to develop an effective modeling strategy that addresses and quantifies multiple components of uncertainty including natural variability, parameter uncertainty, conceptual/model uncertainty, and decision uncertainty in translating model results into regulatory requirements. The modeling task presents multiple unique challenges to the hydrological sciences as a result of the complex fractured and faulted hydrostratigraphy, the distributed locations of sources, the suite of reactive and non-reactive radionuclides, and uncertainty in conceptual models. Characterization of the hydrogeologic system is difficult and expensive because of deep groundwater in the arid desert setting and the large spatial setting of the NTS. Therefore, conceptual model uncertainty is partially addressed through the development of multiple alternative conceptual models of the hydrostratigraphic framework and multiple alternative models of recharge and discharge. Uncertainty in boundary conditions is assessed through development of alternative groundwater fluxes through multiple simulations using the regional groundwater flow model. Calibration of alternative models to heads and measured or inferred fluxes has not proven to provide clear measures of model quality. Therefore, model screening by comparison to independently-derived natural geochemical mixing targets through cluster analysis has also been invoked to evaluate differences between alternative conceptual models. Advancing multiple alternative flow models, sensitivity of transport predictions to parameter uncertainty is assessed through Monte Carlo simulations. The simulations are challenged by the distributed sources in each of the Corrective Action Units, by complex mass transfer processes, and by the size and complexity of the field-scale flow models. An efficient methodology utilizing particle tracking results and ...
Date: December 1, 2007
Creator: Sig Drellack, Lance Prothro
Partner: UNT Libraries Government Documents Department

Vegetation of Upper Coastal Plain depression wetlands: Environmental templates and wetland dynamics within a landscape framework.

Description: Reference wetlands play an important role in efforts to protect wetlands and assess wetland condition. Because wetland vegetation integrates the influence of many ecological factors, a useful reference system would identify natural vegetation types and include models relating vegetation to important regional geomorphic, hydrologic, and geochemical properties. Across the U.S. Atlantic Coastal Plain, depression wetlands are a major hydrogeomorphic class with diverse characteristics. For 57 functional depression wetlands in the Upper Coastal Plain of South Carolina, we characterized the principal vegetation types and used a landscape framework to assess how local (wetland-level) factors and regional landscape settings potentially influence vegetation composition and dynamics. Wetland sites were stratified across three Upper Coastal Plain landscape settings that differ in soils, surface geology, topography, and land use. We sampled plant composition, measured relevant local variables, and analyzed historical transitions in vegetative cover types. Cluster analysis identified six vegetation types, ranging from open-water ponds and emergent marshes to closed forests. Significant vegetation-environment relationships suggested environmental ''templates'' for plant community development. Of all local factors examined, wetland hydrologic regime was most strongly correlated with vegetation type, but depression size, soil textural type, and disturbance history were also significant. Because hydrogeologic settings influence wetland features, local factors important to vegetation were partly predictable from landscape setting, and thus wetland types were distributed non-randomly across landscape settings. Analysis of long-term vegetation change indicated relative stability in some wetlands and succession in others. We developed a landscape-contingent model for vegetation dynamics, with hydroperiod and fire as major driving variables. The wetland classification, environmental templates, and dynamics model provide a reference framework to guide conservation priorities and suggest possible outcomes of restoration or management.
Date: March 1, 2004
Creator: De Steven, Diane & Toner, Maureen, M.
Partner: UNT Libraries Government Documents Department