14 Matching Results

Search Results

Advanced search parameters have been applied.

Chemistry and catalysis in supercritical media

Description: This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The aim of this research is to explore the potential of supercritical fluids as reaction media for stoichiometric and catalytic chemical transformations in an effort to develop new, environmentally-friendly methods for chemical synthesis or processing. This approach offers the possibility of opening up substantially different chemical pathways, increasing selectivity while enhancing reaction rates, facilitating downstream separations and mitigating the need for hazardous solvents. The authors describe investigations into a number of catalytic processes for which carbon dioxide represents a viable solvent replacement. In several cases they have observed significant enhancements in selectivity and/or reactivity relative to conventional organic solvents. They have investigated the following catalytic processes: (a) selective oxidation including dihydroxylation and epoxidation, (b) asymmetric hydrogenation and hydrogen transfer reduction, (c) Lewis acid catalyzed acylation and alkylation, and (c) coupling of amines with carbon dioxide to make isocyanates.
Date: July 1, 1997
Creator: Tumas, W.; Morgenstern, D. & Feng, S.
Partner: UNT Libraries Government Documents Department

Quantum scattering studies of spin-orbit effects in the Cl({sup 2}P) + HCl {yields} ClH + Cl({sup 2}P) reaction

Description: The authors present quantum scattering calculations for the Cl + HCl {yields} ClH + Cl reaction in which they include the three electronic states that correlate asymptotically to the ground state of Cl({sup 2}P) + HCl(X{sup 1}{Sigma}{sup +}). The potential surfaces and couplings are taken from the recent work of C.S. Maierle, G.C. Schatz, M.S. Gordon, P. McCabe and J.N.L. Connor, J. Chem. Soc. Farad. Trans. (1997). They are based on extensive ab initio calculations for geometries in the vicinity of the lowest energy saddle point, and on an electrostatic expansion (plus empirical dispersion and repulsion) for long range geometries including the van der Waals wells. Spin-orbit coupling has been included using a spin-orbit coupling parameter {lambda} that is assumed to be independent of nuclear geometry, and Coriolis interactions are incorporated accurately. The scattering calculations use a hyperspherical coordinate coupled channel method in full dimensionality. AJ-shifting approximation is employed to convert cumulative reaction probabilities for total angular momentum quantum number J = 1/2 into state selected and thermal rate coefficients. Two issues have been studied: (a) the influence of the magnitude of {lambda} on the fine-structure resolved cumulative probabilities and rate coefficients (the authors consider {lambda}`s that vary from 0 to {+-}100% of the true Cl value), and (b) the transition state resonance spectrum, and its variation with {lambda} and with other parameters in the calculations. Cl + HCl is a simple hydrogen transfer reaction which serves as a canonical model both for heavy-light-heavy atom reactions, and for the reactions of halogen atoms with closed shell molecules.
Date: July 1, 1998
Creator: Schatz, G.C.; McCabe, P. & Connor, J.N.L.
Partner: UNT Libraries Government Documents Department

Binding of hydrocarbons and other extremely weak ligands to transition metal complexes that coordinate hydrogen: Investigation of cis-interactions and delocalized bonding involving sigma bonds

Description: This is the final report of a three-year Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). At the forefront of chemistry are efforts to catalytically transform the inert C-H bonds in alkanes to more useful products using metal compounds. The goal is to observe binding and cleavage of alkane C-H bonds on metals or to use related silane Si-H bonding as models, analogous to the discovery of hydrogen (H{sub 2}) binding to metals. Studies of these unique sigma complexes (M{hor_ellipsis}H-Y; Y{double_bond}H, Si, C) will aid in developing new catalysts or technologies relevant to DOE interest, e.g., new methods for tritium isotope separation. Several transition metals (Mo, W, Mn, and Pt) were found to reversibly bind and cleave H{sub 2}, silanes, and halocarbons. The first metal-SiH{sub 4} complexes, thus serving as a model for methane reactions. A second goal is to study the dynamics and energetics of H-Y bonds on metals by neutron scattering, and evidence for interactions between bound H-Y and nearby H atoms on metal complexes has been found.
Date: July 1, 1997
Creator: Kubas, G.J.; Eckert, J. & Luo, X.L.
Partner: UNT Libraries Government Documents Department

Simulations of highly reactive fluids

Description: We report density functional molecular dynamics simulations to determine the early chemical events of hot (T = 3000 K) and dense (1.97 g/cm{sup 3}, V/V{sub 0} = 0.68) nitromethane (CH{sub 3}NO{sub 2}). The first step in the decomposition process is an intermolecular proton abstraction mechanism that leads to the formation of CH{sub 3}NO{sub 2}H and the aci ion H{sub 2}CNO{sub 2}{sup -}, in support of evidence from static high-pressure and shock experiments. An intramolecular hydrogen transfer that transforms nitromethane into the aci acid form, CH{sub 2}NO{sub 2}H, accompanies this event. This is the first confirmation of chemical reactivity with bond selectivity for an energetic material near the condition of fully reacted specimen. We also report the decomposition mechanism followed up to the formation of H{sub 2}O as the first stable product.
Date: July 21, 2005
Creator: Fried, L E; Manaa, M R & Reed, E J
Partner: UNT Libraries Government Documents Department

Solvent tailoring in coal liquefaction. Quarterly report, October 1983-December 1983

Description: The contribution of transferable hydrogen in coal-derived solvents to coal conversion was investigated in a two-step process. Initially, the amount of transferable hydrogen in the coal-derived solvents was analyzed by spectroscopic methods and by catalytic dehydrogenation. The spectroscopic methods included carbon magnetic resonance, proton magnetic resonance as well as a combination of these two methods. Three of the methods gave nearly equivalent quantities for the amount of transferable hydrogen present in the complex coal liquids. Coal conversion determined in each of the coal-derived solvents was correlated to the amount of transferable hydrogen present. The contribution of transferable hydrogen is a significant factor in coal dissolution and the presence of saturates and hexane insolubles compounds in these solvents may have a detrimental effect on coal dissolution. 20 references, 9 figures, 2 tables.
Date: July 1, 1983
Creator: Tarrer, A. R.; Curtis, C. W.; Guin, J. A. & Williams, D. C.
Partner: UNT Libraries Government Documents Department

Organometallic chemistry of bimetallic compounds. Final progress report

Description: This report consists of six sections: heterobimetallic dihydrides, early-late transition metal heterobimetallic compounds, amphiphilic carbene complexes and hydroxycarbene complexes, diiron compounds with bridging hydrocarbon ligands, diphosphine chelates with natural bite angles near 120 degrees, and synthesis and reactions of M=M compounds. (WET)
Date: July 1, 1991
Creator: Casey, C. P.
Partner: UNT Libraries Government Documents Department

Simulations of Fluid Nitromethane Under Extreme Conditions

Description: We report density functional molecular dynamics simulations to determine the early chemical events of hot (T = 3000 K) and dense (1.97 g/cm{sup 3}, V/V{sub 0} = 0.68) nitromethane (CH{sub 3}NO{sub 2}). The first step in the decomposition process is an intermolecular proton abstraction mechanism that leads to the formation of CH{sub 3}NO{sub 2}H and the aci ion H{sub 2}CNO{sub 2}{sup -}, in support of evidence from static high-pressure and shock experiments. An intramolecular hydrogen transfer that transforms nitromethane into the aci acid form, CH{sub 2}NO{sub 2}H, accompanies this event. This is the first confirmation of chemical reactivity with bond selectivity for an energetic material near the condition of fully reacted specimen. We also report the decomposition mechanism followed up to the formation of H{sub 2}O as the first stable product.
Date: July 15, 2003
Creator: Fried, L E; Reed, E J & Manaa, M R
Partner: UNT Libraries Government Documents Department

Organometallic chemistry of bimetallic compounds

Description: This report consists of six sections: heterobimetallic dihydrides, early-late transition metal heterobimetallic compounds, amphiphilic carbene complexes and hydroxycarbene complexes, diiron compounds with bridging hydrocarbon ligands, diphosphine chelates with natural bite angles near 120 degrees, and synthesis and reactions of M=M compounds. (WET)
Date: July 1, 1991
Creator: Casey, C.P.
Partner: UNT Libraries Government Documents Department

Low severity coal liquefaction promoted by cyclic olefins

Description: Low severity coal liquefaction allows for solubilization of coal with reduced gas make. These lower severity conditions may result in some selective bond rupture. Promotion of coal solubilization through hydrogen transfer using highly active and effective hydrogen donors is the objective of this study. The highly effective donors being tested are cyclic olefins. Representative cyclic olefins are isotetralin, which is 1,4,5,8-tetrahydronaphthalene, and 1,4,5,8,9,10-hexahydroanthracene. These compounds are hydroaromatics without aromatic rings and have been shown to be highly effective donors. The objective of the work performed in this study during this quarter was to evaluate reaction parameters for low severity liquefaction reactions using the cyclic olefin, hexahydroanthracene, and the aromatic, anthracene. These model compounds were reacted under a variety of conditions to evaluate their reactivity without coal. The reactions were performed under both thermal and catalytic conditions. Finely divided catalysts from different molybdenum precursors were used to determine their activity in promoting hydrogenation and hydrogen transfer at low severity conditions. The catalysts used were Molyvan L, sulfurized oxymolybdenum dithiocarbamate, molybdenum naphthenate, and Molyvan 822, organo molybdenum dithiocarbamate.
Date: July 27, 1992
Creator: Curtis, C. W.
Partner: UNT Libraries Government Documents Department

The effect of selective absorption on coal conversion. [2-t-butyltetralin]

Description: Scope of work: (1) Importance of hydrogen donors in the coal, prepare highly pure 2-t-butyltetralin. Study the conversion of Argonne coals in tetralin and 2-t-butyltetralin and compare the following: conversion to soluble products, product molecular weight distributions, and product structure. Hydrogen donated by both solvents will be measured by gas chromatography and the same technique will be used to establish the amount of dealkylation of 2-t-butyltetralin. Reactions will be run at several temperatures for varying times. (2) Selective recycle solvent absorption. Argonne coals will be exposed to recycle solvents at several elevated temperatures and the non-absorbed portion of the solvent will be separated by filtration. The composition of the whole oil and non-absorbed portion will be analyzed spectroscopically and chromatographically and compared to determine the composition of the recycle oil dissolved in the coal. 6 figs., 1 tab.
Date: July 1, 1991
Creator: Larsen, J.W. & Lazarov, L.
Partner: UNT Libraries Government Documents Department

Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, April--June 1992

Description: Low severity coal liquefaction allows for solubilization of coal with reduced gas make. These lower severity conditions may result in some selective bond rupture. Promotion of coal solubilization through hydrogen transfer using highly active and effective hydrogen donors is the objective of this study. The highly effective donors being tested are cyclic olefins. Representative cyclic olefins are isotetralin, which is 1,4,5,8-tetrahydronaphthalene, and 1,4,5,8,9,10-hexahydroanthracene. These compounds are hydroaromatics without aromatic rings and have been shown to be highly effective donors. The objective of the work performed in this study during this quarter was to evaluate reaction parameters for low severity liquefaction reactions using the cyclic olefin, hexahydroanthracene, and the aromatic, anthracene. These model compounds were reacted under a variety of conditions to evaluate their reactivity without coal. The reactions were performed under both thermal and catalytic conditions. Finely divided catalysts from different molybdenum precursors were used to determine their activity in promoting hydrogenation and hydrogen transfer at low severity conditions. The catalysts used were Molyvan L, sulfurized oxymolybdenum dithiocarbamate, molybdenum naphthenate, and Molyvan 822, organo molybdenum dithiocarbamate.
Date: July 27, 1992
Creator: Curtis, C. W.
Partner: UNT Libraries Government Documents Department

Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, January--March 1993

Description: The combination of some of these methods could further improve low severity conversion. It seems logical that a combination of a proven pretreatment technique with a good dissolution catalyst or a good hydrogen donor would increase reactivity. The importance of surface chemistry with yield and nature of reactions shown in early research indicates the physical importance of pretreatment. Swelling of the coal with an organic solvent improves the contact. This good contact is also important to slowing retrogressive reactions. The best conversions come when the initial products of liquefaction are preserved. In addition to the physical importance of pretreatment, there is a chemical advantage. Shams saw not only the effect of minimization of organic oxygen coupling reactions, but with his process there also seemed to be a demineralization. The minerals removed the catalysts for retrogressive reactions. The chemistry of liquefaction is still not well understood. Stansberry`s attempt to determine whether catalysts liberate species or just further decomposition was largely inconclusive. There was improvement in conversion so the catalysts seemingly assisted in bond breakage. These good catalytic effects were also seen in the work involving coprocessing. The most compelling factor in each of these procedures, is the ability of the coal to receive the hydrogen that it needs to be liquefied. Bedell and Curtis (1991) found that cyclic olefins gave their hydrogen up much more readily than did hydroaromatics. The coal conversion was a significantly improved. The combination of retrogressive reaction suppression and good hydrogen donability should provide for good coal conversion. It was this reasoning that influenced the decision to investigate a combination of the HCl/methanol pretreatment and the usage of cyclic olefins as hydrogen donors. The increased reactivity of the pretreated coal should enhance the effect of the hydrogen donability of the cyclic olefins.
Date: July 1, 1993
Creator: Curtis, C. W.
Partner: UNT Libraries Government Documents Department

High conversion of coal to transportationn fuels for the future with low HC gas production. Progress report No. 7, April 1--June 30, 1994

Description: The objective is to produce a Synthetic crude from coal at a cost lower than $30.00 per barrel (Task A). A second objective is to produce a fuel which is low in aromatics, yet of sufficiently high octane number for use in the gasoline-burning transportation vehicles of today. To meet this second objective, research was proposed, and funding awarded, for conversion of the highly-aromatic liquid product from coal conversion to a product high in isoparaffins, which compounds in the gasoline range exhibit a high octane number (Task B). Experimental coal liquefaction studies conducted in a batch microreactor in our laboratory have demonstrated potential for high conversions of coal to liquids with low yields of hydrocarbon (HC) gases, hence small consumption of hydrogen in the primary liquefaction step. Ratios of liquids/HC gases as high as 30/1, at liquid yields as high as 82% of the coal by weight, have been achieved. The principal objective of this work is to examine how nearly we may approach these results in a continuous-flow reactor system, at a size sufficient to evaluate the process concept for production of transportation fuels from coal. Accomplishments for this period are described.
Date: July 1, 1994
Creator: Wiser, W. H. & Oblad, A. G.
Partner: UNT Libraries Government Documents Department

High conversion of coal to transportation fuels for the future with low HC gas production. Progress report No. 3, April 1--June 30, 1993

Description: The objective of the current research in coal liquefaction is to produce a synthetic crude from coal at a cost lower than $30.00 per barrel (Task A). A second objective is to produce a fuel which is low in aromatics, yet of sufficiently high octane number for use in the gasoline-burning transportation vehicles of today. To meet this second objective, research was proposed for conversion of the highly-aromatic liquid product from coal conversion to a product high in isoparaffins, which compounds in the gasoline range exhibit a high octane number (Task B). Experimental coal liquefaction studies conducted in a batch microreactor in the laboratory have demonstrated potential for high conversions of coal to liquids with low yields of hydrocarbon (HC) gases, hence small consumption of hydrogen in the primary liquefaction step. Ratios of liquids/HC gases as high as 30/1, at liquid yields as high as 82% of the coal by weight, have been achieved. The principal objective of this work is to examine how nearly the authors may approach these results in a continuous-flow system, at a size sufficient to evaluate the process concept for production of transportation fuels from coal. Work to date is described.
Date: July 1, 1993
Creator: Wiser, W. H. & Oblad, A. G.
Partner: UNT Libraries Government Documents Department