5 Matching Results

Search Results

Advanced search parameters have been applied.

Fundamental studies of supported bimetallic catalysts by NMR spectroscopy

Description: Various hydrogenation reactions on transition metals are important commercially whereas certain hydrogenolysis reactions are useful from fundamental point of view. Understanding the hydrogen mobility and kinetics of adsorption-desorption of hydrogen is important in understanding the mechanisms of such reactions involving hydrogen. The kinetics of hydrogen chemisorption was studied by means of selective excitation NMR on silica supported Pt, Rh and Pt-Rh catalysts. The activation energy of hydrogen desorption was found to be lower on silica supported Pt catalysts as compared to Rh and Pt-Rh catalysts. It was found that the rates of hydrogen adsorption and desorption on Pt-Rh catalyst were similar to those on Rh catalyst and much higher as compared to Pt catalyst. The Ru-Ag bimetallic system is much simpler to study than the Pt-Rh system and serves as a model system to characterize more complicated systems such as the K/Ru system. Ag was found to decrease the amounts of adsorbed hydrogen and the hydrogen-to-ruthenium stoichiometry. Ag reduced the populations of states with low and intermediate binding energies of hydrogen on silica supported Ru catalyst. The rates of hydrogen adsorption and desorption were also lower on silica supported Ru-Ag catalyst as compared to Ru catalyst. This report contains introductory information, the literature review, general conclusions, and four appendices. An additional four chapters and one appendix have been processed separately for inclusion on the data base.
Date: October 17, 1996
Creator: Savargaonkar, N.
Partner: UNT Libraries Government Documents Department

Intermolecula transfer and elimination of molecular hydrogen in thermal reactions of unsaturated organic compounds

Description: Two reactions which are important to coal liquefaction include intermolecular transfer and the elimination of two hydrogen atoms. We have designed several model reactions to probe the viability of several hydrogen transfer and elimination pathways. This report described studies on these reactions using organic model compounds.
Date: February 10, 1995
Creator: Suria, S.
Partner: UNT Libraries Government Documents Department

Development of Novel Electrode Materials for the Electrocatalysis of Oxygen-Transfer and Hydrogen-Transfer Reactions

Description: Throughout this thesis, the fundamental aspects involved in the electrocatalysis of anodic O-transfer reactions and cathodic H-transfer reactions have been studied. The investigation into anodic O-transfer reactions at undoped and Fe(III)[doped MnO{sub 2} films] revealed that MnO{sub 2} film electrodes prepared by a cycling voltammetry deposition show improved response for DMSO oxidation at the film electrodes vs. the Au substrate. Doping of the MnO{sub 2} films with Fe(III) further enhanced electrode activity. Reasons for this increase are believed to involve the adsorption of DMSO by the Fe(III) sites. The investigation into anodic O-transfer reactions at undoped and Fe(III)-doped RuO{sub 2} films showed that the Fe(III)-doped RuO{sub 2}-film electrodes are applicable for anodic detection of sulfur compounds. The Fe(III) sites in the Fe-RuO{sub 2} films are speculated to act as adsorption sites for the sulfur species while the Ru(IV) sites function for anodic discharge of H{sub 2}O to generate the adsorbed OH species. The investigation into cathodic H-transfer reactions, specifically nitrate reduction, at various pure metals and their alloys demonstrated that the incorporation of metals into alloy materials can create a material that exhibits bifunctional properties for the various steps involved in the overall nitrate reduction reaction. The Sb{sub 10}Sn{sub 20}Ti{sub 70}, Cu{sub 63}Ni{sub 37} and Cu{sub 25}Ni{sub 75} alloy electrodes exhibited improved activity for nitrate reduction as compared to their pure component metals. The Cu{sub 63}Ni{sub 37} alloy displayed the highest activity for nitrate reduction. The final investigation was a detailed study of the electrocatalytic activity of cathodic H-transfer reactions (nitrate reduction) at various compositions of Cu-Ni alloy electrodes. Voltammetric response for NO{sub 3}{sup -} at the Cu-Ni alloy electrode is superior to the response at the pure Cu and Ni electrodes. This is explained on the basis of the synergism of the two different metal sites at these binary ...
Date: August 27, 2002
Creator: Simpson, Brett Kimball
Partner: UNT Libraries Government Documents Department

Chemistry of coal model compounds: cleavage of aliphatic bridges between aromatic nuclei catalyzed by Lewis acids.

Description: The condensed polynuclear aromatic clusters of coal are believed to be linked principally by straight-chain aliphatic bridges varying from 0 to 4 carbon atoms in length and the cleavage of these linkages is expected to be an important step in the coal liquefaction process. This study focuses on the means by which Lewis acid catalysts, specifically AlCl/sub 3/ and ZnCl/sub 2/, promote the cleavage of these linkages. To facilitate product identification and interpretation of reaction mechanisms, organic compounds which model the aliphatic bridges were used on substrates. All experiments were performed in a magnetically stirred autoclave under either an H/sub 2/ or N/sub 2/ atmosphere at elevated pressure to determine the role of H/sub 2/. Reaction temperatures ranging from 200 to 350/sup 0/C were used to avoid the complication of pyrolysis reactions. Reaction products were identified with the aid of gas chromatography/mass spectrometry, and quantitative product yields were determined by gas chromatography. Experiments with AlCl/sub 3/ and the substrates containing two phenyl rings linked by 0 to 4 carbon atoms showed that AlCl/sub 3/ catalyzed cleavage of all the aliphatic bridges. ZnCl/sub 2/ was totally inactive in cleaving the alkyl bridges in these compounds. Substitution of a phenyl group by a hydroxyphenyl or a naphthyl group in the model compounds promoted the cleavage of aliphatic linkages in the presence of AlCl/sub 3/. In contrast to reactions with the diphenylalkanes, ZnCl/sub 2/ was also found to catalyze the cleavage of these compounds. Plausible reaction mechanisms are proposed which explain the experimental results. The role of gaseous H/sub 2/ in these mechanisms was also investigated.
Date: April 1, 1978
Creator: Taylor, N. D.
Partner: UNT Libraries Government Documents Department

Studies of transition states and radicals by negative ion photodetachment

Description: Negative ion photodetachment is a versatile tool for the production and study of transient neutral species such as reaction intermediates and free radicals. Photodetachment of the stable XHY{sup {minus}} anion provides a direct spectroscopic probe of the transition state region of the potential energy surface for the neutral hydrogen transfer reaction X + HY {yields} XH + Y, where X and Y are halogen atoms. The technique is especially sensitive to resonances, which occur at a specific energy, but the spectra also show features due to direct scattering. We have used collinear adiabatic simulations of the photoelectron spectra to evaluate trail potential energy surfaces for the biomolecular reactions and have extended the adiabatic approach to three dimensions and used it to evaluate empirical potential energy surfaces for the I + Hl and Br + HI reactions. In addition, we have derived an empirical, collinear potential energy surface for the Br + HBr reaction that reproduces our experimental results and have extended this surface to three dimensions. Photodetachment of a negative ion can be also used to study neutral free radicals. We have studied the vibrational and electronic spectroscopy of CH{sub 2}NO{sub 2} by photoelectron spectroscopy of CH{sub 2}NO{sub 2}{sup {minus}}, determining the electron affinity of CH{sub 2}NO{sub 2}, gaining insight on the bonding of the {sup 2}B{sub 1} ground state and observing the {sup 2}A{sub 2} excited state for the first time. Negative ion photodetachment also provides a novel and versatile source of mass-selected, jet-cooled free radicals. We have studied the photodissociation of CH{sub 2}NO{sub 2} at 270, 235, and 208 nm, obtaining information on the dissociation products by measuring the kinetic energy release in the photodissociation.
Date: December 1, 1991
Creator: Metz, R. B.
Partner: UNT Libraries Government Documents Department