228 Matching Results

Search Results

Advanced search parameters have been applied.

Personal Fuel Appliance

Description: This report summarizes the progress made in Phase I of Stuart's Personal Fueling Appliance Program. Phase I concluded in March 2002 with the demonstration and deployment of several working models. As proposed in the original project plan, working models of the PFA were built to prove feasibility and technically market the concept. Future follow up phases of the project, Phase II and III, will take the concept through prototyping development to pre-production of commercially viable product. The Phase I program successfully demonstrate a home fueling system capable of running on a household circuit, 220V/40 Amp/single phase or equivalent. Connected to a source of ''drinking water'' the system has all the functions necessary to convert water and electricity to high-pressure hydrogen fuel. Pressures of up to 3600 psig were achieved on demonstration systems and higher pressures up to 5000 psig were achieved in the lab. The development program spanned building 3 series of prototypes: White Box (1 unit built 1998), PFA Series 100 (4 units built 1999-2000), and Series 200 (6 units built 2000-02). Advanced in controls and process learned in the PFA program have been embodied in Stuart's larger fuel appliances.
Date: December 30, 2003
Creator: Energy, Stuart
Partner: UNT Libraries Government Documents Department

Assessment study of devices from the generation of electricity from stored hydrogen

Description: A study was performed to evaluate alternative methods for the generation of electricity from stored hydrogen. The generation systems considered were low- temperature and high-temperature fuel cells, gas turbines and steam turbines. These systems were evaluated in terms of present-day technology and future (1995) technology. Of primary interest were the costs and efficiencies of the devices, the versatility of the devices toward various types of gaseous feeds, and the likelihood of commercial development. On the basis of these evaluations, recommendations were made describing the areas of technology which should be developed.
Date: December 1, 1975
Creator: Ackerman, J.P.; Barghusen, J.J. & Link, L.E.
Partner: UNT Libraries Government Documents Department

Development of a National Center for Hydrogen Technology

Description: In November 2005, the Energy & Environmental Research Center (EERC), ePowerSynergies, Inc. (ePSI), and Resurfice Corporation teamed to develop, produce, and demonstrate the world's first and only fuel cell-powered ice resurfacer. The goals of this project were: {sm_bullet} To educate the public on the readiness, practicality, and safety of fuel cells powered by hydrogen fuel and {sm_bullet} To establish a commercialization pathway in an early-adopter, niche market. The vehicle was developed and produced in a short 3-month span. The vehicle made its world debut at U.S. Senator Byron Dorgan's (D-ND) 2005 Hydrogen Energy Action Summit. Subsequently, the vehicle toured North America appearing at numerous public events and conferences, receiving much attention from international media outlets.
Date: March 1, 2007
Creator: Almlie, Jay C.; Wood, Bruce & Schlupp, Rich
Partner: UNT Libraries Government Documents Department

Fuel Effects on a Low-Swirl Injector for Lean Premixed Gas Turbines

Description: Laboratory experiments have been conducted to investigate the fuel effects on the turbulent premixed flames produced by a gas turbine low-swirl injector (LSI). The lean-blow off limits and flame emissions for seven diluted and undiluted hydrocarbon and hydrogen fuels show that the LSI is capable of supporting stable flames that emit < 5 ppm NO{sub x} ({at} 15% O{sub 2}). Analysis of the velocity statistics shows that the non-reacting and reacting flowfields of the LSI exhibit similarity features. The turbulent flame speeds, S{sub T}, for the hydrocarbon fuels are consistent with those of methane/air flames and correlate linearly with turbulence intensity. The similarity feature and linear S{sub T} correlation provide further support of an analytical model that explains why the LSI flame position does not change with flow velocity. The results also show that the LSI does not need to undergo significant alteration to operate with the hydrocarbon fuels but needs further studies for adaptation to burn diluted H{sub 2} fuels.
Date: December 3, 2007
Creator: Littlejohn, David; Littlejohn, David & Cheng, R.K.
Partner: UNT Libraries Government Documents Department

Final Report for the H2Fuel Bus

Description: The H2Fuel Bus is the world's first hydrogen-fueled electric hybrid transit bus. It was a project developed through a public/private partnership involving several leading technological and industrial organizations, with primary funding by the Department of Energy (DOE). The primary goals of the project are to gain valuable information on the technical readiness and economic viability of hydrogen fueled buses and to enhance the public awareness and acceptance of emerging hydrogen technologies.
Date: November 25, 1998
Creator: Jacobs, W.D.
Partner: UNT Libraries Government Documents Department

On-Board Hydrogen Storage for a City Transit Bus

Description: An electric bus was modified to use hydrogen fuel for demonstration in the city of Augusta, Georgia, USA. The hydrogen fuel is stored in a solid form using an on-board metal hydride storage system. The storage system performs better than expected.
Date: March 1, 1998
Creator: Heung, L.K.
Partner: UNT Libraries Government Documents Department

The importance of safety in achieving the widespread use of hydrogen as a fuel

Description: The advantages of hydrogen fuel have been adequately demonstrated on numerous occasions. However, two major disadvantages have prevented any significant amount of corresponding development. These disadvantages have been in the economics of producing sufficient quantities of hydrogen and in the safety (both real and perceived) of its use. To date work has mostly been properly centered on solving the economic problems. However, a greater effort on the safety of new hydrogen systems now being proposed also deserves consideration. To achieve the greatest safety in the expansion of the use of hydrogen into its wide-spread use as a fuel, attention must be given to four considerations. These are, obtaining knowledge of all the physical principles involved in the new uses, having in place the regulations that allow the safe interfacing of the new systems, designing and constructing the new systems with safety in mind, and the training of the large number of people that will become the handlers of the hydrogen. Existing organizations that produce, transport, or use hydrogen on a large scale have an excellent safety record. This safety record comes as a consequence of dedicated attention to the above-mentioned principles. However, where these principles were not closely followed, accidents have resulted. Some examples can be cited. As the use of hydrogen becomes more widespread, there must be a mechanism for assuring the universal application of these principles. Larger and more numerous fleet operations with hydrogen fuel may be the best way to begin the indoctrination of the general public to the more general use of hydrogen fuel. Demonstrated safe operation with hydrogen is vital to its final acceptance as the fuel of choice.
Date: September 1, 1997
Creator: Edeskuty, F.J.
Partner: UNT Libraries Government Documents Department

Effects of flow transients on the burning velocity of hydrogen-air premixed flames

Description: The effects of unsteady strain rate on the burning velocity of hydrogen-air premixed flames are studied in an opposed nozzle configuration. The numerical method employs adaptive time integration of a system of differential-algebraic equations. Detailed hydrogen-air kinetic mechanism and transport properties are considered. The equivalence ratio is varied from lean to rich premixtures in order to change the effective Lewis number. Steady Markstein numbers for small strain rate are computed and compared with experiment. Different definitions of flame burning velocity are examined under steady and unsteady flow conditions. It is found that, as the unsteady frequency increases, large deviations between different flame speeds are noted depending on the location of the flame speed evaluation. Unsteady flame response is investigated in terms of the Markstein transfer function which depends on the frequency of oscillation. In most cases, the flame speed variation attenuates at higher frequencies, as the unsteady frequency becomes comparable to the inverse of the characteristic flame time. Furthermore, unique resonance-like behavior is observed for a range of rich mixture conditions, consistent with previous studies with linearized theory.
Date: July 30, 2000
Creator: Im, H. G. & Chen, J. H.
Partner: UNT Libraries Government Documents Department


Description: The Brookhaven National Laboratory (BNL) High-Temperature Combustion Facility (HTCF) was used to perform hydrogen deflagration and detonation experiments at temperatures to 650 K. Safety features that were designed to ensure safe and reliable operation of the experimental program are described. Deflagration and detonation experiments have been conducted using mixtures of hydrogen, air, and steam. Detonation cell size measurements were made as a function of mixture composition and thermodynamic gas conditions. Deflagration-to-detonation transition experiments were also conducted. Results of the experimental program are presented, and implications with respect to hydrogen safety are discussed.
Date: June 11, 2000
Partner: UNT Libraries Government Documents Department

High Efficiency Generation of Hydrogen Fuels Using Nuclear Power - for the period August 1, 1999 through October 31, 1999

Description: OAK B188 High Efficiency Generation of Hydrogen Fuels Using Nuclear Power - for the period August 1, 1999 through October 31, 1999. The highlights for this period are: (1) The methodologies for searching the literature for potentially attractive thermochemical water-splitting cycles, storing cycle and reference data, and screening the cycles have been established; and (2) The water-splitting cycle screening criteria were established on schedule.
Date: January 1, 2000
Creator: Brown, L. C.
Partner: UNT Libraries Government Documents Department

Proceedings of the 1995 U.S. DOE hydrogen program review. Volume II

Description: The 1995 US DOE Hydrogen Program Review was held April 18-21, 1995 in Coral Gables, FL. Volume II of the Proceedings contains 8 papers presented under the subject of hydrogen storage and 17 papers presented on hydrogen production. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
Date: September 1, 1995
Partner: UNT Libraries Government Documents Department

Hydrogen as a near-term transportation fuel

Description: The health costs associated with urban air pollution are a growing problem faced by all societies. Automobiles burning gasoline and diesel contribute a great deal to this problem. The cost to the United States of imported oil is more than US$50 billion annually. Economic alternatives are being actively sought. Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range (>480 km) with emissions well below the ultra-low emission vehicle standards being required in California. These vehicles can also be manufactured without excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining engine and other component efficiencies, the overall vehicle efficiency should be about 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to what US vehicle operators pay today. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing low-cost, large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus can be in place when fuel cells become economical for vehicle use.
Date: June 29, 1995
Creator: Schock, R.N.; Berry, G.D.; Smith, J.R. & Rambach, G.D.
Partner: UNT Libraries Government Documents Department

A comparison of hydrogen vehicle storage options using the EPA urban driving schedule

Description: The three standard options for the storage of hydrogen fuel on passenger vehicles are compressed gas, metal hydride and cryogenic liquid storage. The weight of the hydrogen storage system affects the performance of the vehicle. We examine vehicle performance as a function of hydrogen storage system type and capacity. Three vehicles are modeled, a metro commuter, a mid size sedan and a full size van. All vehicles are powered by a fuel cell and an electric drive train. The impact of auxiliary power requirements for air conditioning is also examined. In making these comparisons it is necessary to assume a driving cycle. We use the United States Environmental Protection Agency (EPA) urban dynamometer driving schedule in all simulations to represent typical urban driving conditions.
Date: September 1, 1995
Creator: Daugherty, M.A.; Prenger, F.C.; Daney, D.E.; Hill, D.D. & Edeskuty, F.J.
Partner: UNT Libraries Government Documents Department

Development of X-ray Tracer Diagnostics for Radiatively-Driven Copper-Doped Beryllium Ablators. NLUF FY1999 Report

Description: This report covers the fiscal year 1999 portion of our ongoing project to develop tracer spectral diagnostics of ablator conditions in the hohlraum radiation environment. The overall goal of the experimental campaign is to measure the turn-on times of K{sub a} absorption features from tracers buried in planar witness plates. The tracers are thin and at a specific, known depth in the witness plates so that the turn-on times are indicators of the arrival of the Marshak wave at the specified depths. Ultimately, we intend to compare the delay in the turn-on times of the tracer signals between doped and undoped ablator materials, and thus study the effect of ablator dopants on the Marshak wave velocity. During FY 1999, our primary goal was to simply measure an absorption signal, matching tracer depth to drive temperature and testing the overall feasibility of our experimental scheme. In indirect-drive inertial confinement fusion (ICF) energy is deposited rapidly on the outside of a spherical capsule, ablating the outer layers of the capsule and compressing the interior. If this process is carefully controlled, then hydrogen fuel at the center of the capsule can be compressed and heated such that fusion reactions may proceed. The efficiency of the compression depends crucially on the time-dependent energy deposition onto the ablator material on the outside of the capsule. The nature of this coupling can be controlled through the use of ablator dopants, which modify the density and opacity of the ablator layer. Clearly, it is crucial to the success of indirect-drive ICF to have a means for testing the effects of ablator dopants, and more generally for having a diagnostic that is capable of determining time-dependent ablator properties. To this end, we are adapting tracer spectroscopy techniques to make time-dependent measurements of the ionization state of planar ablator ...
Date: May 2000
Creator: Cohen, David H.; MacFarlane, Joseph J.; Wang, Ping; Jaanimagi, Paul A.; Oertel, John; Magelssen, Glenn et al.
Partner: UNT Libraries Government Documents Department

FY 2005 Annual Progress Report for the DOE Hydrogen Program

Description: In cooperation with industry, academia, national laboratories, and other government agencies, the Department of Energy's Hydrogen Program is advancing the state of hydrogen and fuel cell technologies in support of the President's Hydrogen Fuel Initiative. The initiative seeks to develop hydrogen, fuel cell, and infrastructure technologies needed to make it practical and cost-effective for Americans to choose to use fuel cell vehicles by 2020. Significant progress was made in fiscal year 2005 toward that goal.
Date: October 1, 2005
Partner: UNT Libraries Government Documents Department

The symbiosis of carbon-dioxide sequestration and hydrogen fuel: what is its significance for the long-term global energy system. Final progress report July 1998 - July 2000

Description: This study examined the implications of the ''fuel decarbonization/carbon sequestration'' strategy for the world energy system.
Date: September 8, 2000
Creator: Socolow, Robert H.; Ogden, Joan M. & Williams, Robert H.
Partner: UNT Libraries Government Documents Department

Technical Analysis of Projects Being Funded by the DOE Hydrogen Program

Description: In July 2000, Energetics began a project in which we performed site-visit based technical analyses or evaluations on hydrogen R&D projects for the purpose of providing in-depth information on the status and accomplishments of these projects to the public, and especially to hydrogen stakeholders. Over a three year period, 32 site-visit analyses were performed. In addition two concepts gleaned from the site visits became subjects of in depth techno-economic analyses. Finally, Energetics produced a compilation document that contains each site-visit analysis that we have performed, starting in 1996 on other contracts through the end of Year One of the current project (July 2001). This included 21 projects evaluated on previous contracts, and 10 additional ones from Year One. Reports on projects visited in Years One and Two were included in their respective Annual Reports. The Year Two Report also includes the two In-depth Analyses and the Compilation document. Reports in Year three began an attempt to perform reviews more geared to hydrogen safety. This Final Report contains a summary of the overall project, all of the 32 site-visit analyses and the two In-depth Analyses.
Date: February 10, 2006
Creator: Skolnik, Edward G.
Partner: UNT Libraries Government Documents Department

Investigation of H2 Concentration and Combustion Instability Effects on the Kinetics of Strained Syngas Flames

Description: The flame extinction limits of syngas (H{sub 2}-CO) flames were measured using a twin-flame-counter-flow burner. Plots of Extinction limits vs. global stretch rates were generated at different mixture compositions and an extrapolation method was used to calculate the flame extinction limit corresponding to an experimentally unattainable zero-stretch condition. The zero-stretch extinction limit of H{sub 2}-CO mixtures decreases (from rich to lean) with the increase in H{sub 2} concentration in the mixture. The average difference between the measured flame extinction limit and the Le Chatelier's calculation is around {approx} 7%. The measured OH{sup -} chemiluminescent data indicates that regardless of mixture compositions the OH radical concentration reduces (within the experimental uncertainties) to an extinction value prior to the flame extinction. Flame extinction limits of H{sub 2}-CO mixtures measured in a flat-flame burner configuration also show a similar relation. Additionally, the measured laminar flame velocity close to the extinction indicates that regardless of fuel composition the premixed flame of hydrogen fuel blends extinguishes when the mixture laminar flame velocity falls below a critical value. The critical laminar flame velocity at extinction for H{sub 2}-CO premixed flames (measured in the flat flame burner configuration) is found to be 3.77({+-}0.38) cm/s. An externally perturbed H{sub 2}-CO twin flame was not experimentally achievable for the mixture conditions used in the present investigation. A slightest perturbation in the flow-field distorts the H{sub 2}-CO twin-flame. The flame becomes highly unstable with the introduction of an externally excited flow oscillation.
Date: August 7, 2006
Creator: Choudhuri, Ahsan R.
Partner: UNT Libraries Government Documents Department