90 Matching Results

Search Results

Advanced search parameters have been applied.

Modeling the segregation of hydrogen to lattice defects in nickel

Description: In order to better understand the effect of hydrogen on the fracture behavior of nickel, this study uses the embedded atom method (EAM) to model the segregation of hydrogen to lattice defects in nickel. The dislocations modeled include an edge, a screw, and a Lomer dislocation in the locked configuration, i.e. the Lomer-Cottrell Cock (LCL). Several coincident site lattice boundaries are also investigated, these being the {Sigma}3(112) and {Sigma}11(113) tilt boundaries. It will be shown that the trap site energies in the vicinity of both the edge and screw dislocations is only about 0.1 eV while for the LCL and all of the grain boundaries the maximum trap site energy in the vicinity of the defect is on order 0.3 eV. Using a Monte-Carlo method to a impose a hydrogen environment produces much stronger segregation of hydrogen to the deeper traps. When compared to recent experimental studies showing that a binding energy between 0.3-0.4 eV is required for trap site controlled fracture in IN903, it can be concluded that the embrittlement process is most probably associated with trapping of hydrogen to the Lomer-Cottrell Locks.
Date: May 1, 1995
Creator: Angelo, J.E.; Moody, N.R. & Baskes, M.I.
Partner: UNT Libraries Government Documents Department

Developing Fatigue Pre-crack Procedure to Evaluate Fracture Toughness of Pipeline Steels Using Spiral Notch Torsion Test

Description: The spiral notch torsion test (SNTT) has been utilized to investigate the crack growth behavior of X52 steel base and welded materials used for hydrogen infrastructures. The X52 steel materials are received from a welded pipe using friction stir welding techniques. Finite element models were established to study the crack growth behavior of steel SNTT steel samples, which were assumed to be isotropic material. A series SNTT models were set up to cover various crack penetration cases, of which the ratios between crack depth to diameter (a/D ratio) ranging from 0.10 to 0.45. The evolution of compliance and energy release rates in the SNTT method have been investigated with different cases, including different geometries and materials. Indices of characteristic compliance and energy release rates have been proposed. Good agreement has been achieved between predictions from different cases in the same trend. These work shed lights on a successful protocol for SNTT application in wide range of structural materials. The further effort needed for compliance function development is to extend the current developed compliance function to the deep crack penetration arena, in the range of 0.55 to 0.85 to effectively determine fracture toughness for extremely tough materials.
Date: October 1, 2012
Creator: Wang, Jy-An John; Tan, Ting; Jiang, Hao; Zhang, Wei & Feng, Zhili
Partner: UNT Libraries Government Documents Department

Development of membranes for hydrogen separation: Pd-coated V-10Pd

Description: Numerous Group IVB and VB alloys were prepared and tested as potential membrane materials but most of these materials were brittle or exhibited cracking during hydrogen exposure. One of the more ductile alloys, V-10Pd (at. %), was fabricated into a thin (107-{micro}m thick) composite membrane coated with 100 nm of Pd on each side. The material was tested for hydrogen permeability, resistance to hydrogen embrittlement, and long term hydrogen flux stability. The hydrogen permeability, {phi}, of the V-10Pd membrane was 3.86 x 10{sup -8} mol H{sub 2} m{sup -1} s{sup -1} Pa{sup -0.5} (avg. of three different samples) at 400 C, which is slightly higher than the permeability of Pd-23Ag at that temperature. A 1400 h hydrogen flux test at 400 C demonstrated that the rate of metallic interdiffusion was slow between the V-10Pd foil and the 100-nm-thick Pd coating on the surface. However, at the end of testing the membrane cracked at 118 C because of hydrogen embrittlement.
Date: January 1, 2009
Creator: Paglieri, Stephen N; Wermer, Joseph R; Buxbaum, Robert E; Ciocco, Michael V; Howard, Bret H & Morreale, Bryan D
Partner: UNT Libraries Government Documents Department

Mechanical Behavior and Fractography of 304 Stainless Steel with High Hydrogen Concentration

Description: Hydrogen embrittlement of 304 stainless steel with different hydrogen concentrations has been investigated. An electrochemical technique was used to effectively charge the high level of hydrogen into 304 stainless steel in a short period of time. At 25 ppm of hydrogen, 304 stainless steel loses 10 percent of its original mechanical strength and 20 percent plasticity. Although the ductile feature dominates the fractography, the brittle crown area near the outer surface shows the intergranular rupture effected by hydrogen. At 60 ppm of hydrogen, 304 stainless steel loses 23 percent of its strength and 38 percent plasticity, where the brittle mode dominates the fracture of the materials. Experimental results show that hydrogen damage to the performance of 304 stainless steel is significant even at very low levels. The fractograph analysis indicates the high penetration ability of hydrogen in 304 stainless steel. This work also demonstrates the advantages of the electrochemical charging technique in the study of hydrogen embrittlement.
Date: February 5, 2003
Creator: Au, M.
Partner: UNT Libraries Government Documents Department

The effect of potential on the high-temperature fatigue crack growth response of low alloy steels: Part II, electrochemical results

Description: Environmentally assisted cracking (EAC) in low alloy steels was found to be dependent on externally applied potential in low sulfur steels in high temperature water. EAC could be turned on when the specimen was polarized anodically above a critical potential. However, hydrogen (H) additions inhibited the ability of potential to affect EAC. The behavior was related to formation of H ions during H oxidation at the crack mouth. A mechanism based on formation of H sulfide at the crack tip and H ions at the crack mouth is presented to describe the process by which sulfides and H ions affect the critical sulfide concentration at the crack tip.
Date: April 1, 1997
Creator: Moshier, W.C. & James, L.A.
Partner: UNT Libraries Government Documents Department

Laser sampling system for an inductively-coupled atomic emission spectrometer. Final report

Description: A laser sampling system was attached to a Perkin Elmer Optima 3000 inductively-coupled plasma, atomic emission spectrometer that was already installed and operating in the Chemistry and Geochemistry Department at the Colorado School of Mines. The use of the spectrometer has been highly successful. Graduate students and faculty from at least four different departments across the CSM campus have used the instrument. The final report to NSF is appended to this final report. Appendices are included which summarize several projects utilizing this instrument: acquisition of an inductively-coupled plasma atomic emission spectrometer for the geochemistry program; hydrogen damage susceptibility assessment for high strength steel weldments through advanced hydrogen content analysis, 1996 and 1997 annual reports; and methods for determination of hydrogen distribution in high strength steel welds.
Date: February 15, 1998
Partner: UNT Libraries Government Documents Department

Fracture toughness of Alloy 600 and EN82H weld in air and water

Description: The fracture toughness of Alloy 600 and its weld, EN82H, was characterized in 54 C to 338 C air and hydrogenated water. Elastic-plastic J{sub IC} testing was performed due to the inherent high toughness of these materials. Alloy 600 exhibited excellent fracture toughness under all test conditions. While EN82H welds displayed excellent toughness in air and high temperature water, a dramatic toughness degradation occurred in water at temperatures below 149 C. Comparison of the cracking response in low temperature water with that for hydrogen-precharged specimens tested in air demonstrated that the loss in toughness is due to a hydrogen-induced intergranular cracking mechanism. At loading rates about approx. 1000 MPa {radical}m/h, the toughness in low temperature water is improved because there is insufficient time for hydrogen to embrittle grain boundaries. Electron fractographic examinations were performed to correlate macroscopic properties with key microstructural features and operative fracture mechanisms.
Date: June 1, 1999
Creator: Mills, W.J. & Brown, C.M.
Partner: UNT Libraries Government Documents Department

An atomistic study of the effects of stress and hydrogen on a dislocation lock in nickel

Description: Even though austenitic alloys are commonly used in a hydrogen environment, hydrogen-induced fracture of these alloys has been reported. Most recently it has been shown that the failure of these alloys in hydrogen is initiated by void formation at slip band intersections. It is the object of this work to investigate the atomistic mechanisms that occur at these slip band intersections in the presence of hydrogen. Specifically it has been suggested that dislocation-dislocation interactions may play a large role in the initiation of voids or cracks. Hirth has summarized the various forms of dislocation interactions, traditionally called Lomer-Cottrell Locks (LCLs), that can occur. Baskes et al. have investigated the effects of stress on a LCL using an Embedded Atom Method (EAM) model for nickel developed previously by Angelo et al. The EAM is a well-established semi-empirical method of atomistic calculation that has been successfully used for over a decade to calculate the energetics and structure of defects in transition metals. The work by Angelo et al. established that the trapping of hydrogen to single dislocations had a maximum energy of ca. 0.1 eV while the trapping to a LCL was significantly greater, {approximately}0.33 eV, thus the authors expect that a LCL could be important in explaining the fracture behavior of a fcc material in a hydrogen environment. Baskes et al. found that under uniaxial stress a LCL in the absence of hydrogen underwent a number of transitions, but it did not dissociate or form a crack nucleus. In this work the authors extend the previous work to include the effects of hydrogen. Specifically they will simulate the experiments of Moody et al. for the case of room temperature exposure of Inconel to 190 atm of hydrogen.
Date: March 19, 1998
Creator: Hoagland, R.G. & Baskes, M.I.
Partner: UNT Libraries Government Documents Department

Evaluation of the Intrinsic and Extrinsic Fracture Behavior of Iron Aluminides

Description: In this paper, we first present the status of our computational modeling study of the thermal expansion coefficient of Fe/Al over a wide range of temperature and evaluate its dependence on selected additives. This will be accomplished by applying an isobaric Monte Carlo technique. The required total energy of the sample will be computed by using a tight-binding (TB) method that allows us to significantly increase the size of the computational data base without reducing the accuracy of the calculations. The parameters of the TB Hamiltonian are fitted to reproduce the band structure obtained by our quantum mechanical full-potential LMTO calculations. The combination of the three methods mentioned above creates an effective approach to the computation of the physical properties of the transition-metal aluminides and it can be extended to alloys with more than two components. At present, we are using a simplified approach for a first-round of results; and as a test of the simplified approach, have obtained excellent agreement with experiment for aluminum. Our previous experimental results showed that, because of their smaller grain size, FA-187 and FA-189 are extrinsically more susceptible to environmental embrittlement than FA-186 under low strain loading condition. To further investigate the grain boundary size effect as related to the susceptibility of hydrogen embrittlement, we conducted comparative finite element modeling simulations of initial intergranular fracture of two iron aluminides (FA186 and FA189) due to hydrogen embrittlement. Sequentially coupled stress and mass diffusion analyses are carried out to determine crack-tip stress state and the extent of hydrogen diffusion at the crack tip region, and a proper failure criteria is then adopted to simulate the intergranular fracture. Good qualitative agreement between the modeling predictions and experimental results is observed.
Date: January 11, 2001
Creator: Cooper, B.R.
Partner: UNT Libraries Government Documents Department

Computer Simulation of Intergranular Stress Corrosion Cracking via Hydrogen Embrittlement

Description: Computer simulation has been applied to the investigation of intergranular stress corrosion cracking in Ni-based alloys based on a hydrogen embrittlement mechanism. The simulation employs computational modules that address (a) transport and reactions of aqueous species giving rise to hydrogen generation at the liquid-metal interface, (b) solid state transport of hydrogen via intergranular and transgranular diffusion pathways, and (c) fracture due to the embrittlement of metallic bonds by hydrogen. A key focus of the computational model development has been the role of materials microstructure (precipitate particles and grain boundaries) on hydrogen transport and embrittlement. Simulation results reveal that intergranular fracture is enhanced as grain boundaries are weakened and that microstructures with grains elongated perpendicular to the stress axis are more susceptible to cracking. The presence of intergranular precipitates may be expected to either enhance or impede cracking depending on the relative distribution of hydrogen between the grain boundaries and the precipitate-matrix interfaces. Calculations of hydrogen outgassing and in gassing demonstrate a strong effect of charging method on the fracture behavior.
Date: April 1, 2000
Creator: Smith, R.W.
Partner: UNT Libraries Government Documents Department

Evaluation of Hydrogen Embrittlement of SAFKEG 3940A Package in KAMS

Description: This report documents the evaluation of the potential for hydrogen embrittlement of the stainless steel of the inner containment vessel and the outer containment vessel components of the SAFKEG 3940A shipping package under transportation conditions and storage conditions in the K-Area Monitored Storage. The components are evaluated under a bounding scenario for hydrogen exposure.
Date: December 10, 2003
Creator: Duncan, A.J.
Partner: UNT Libraries Government Documents Department


Description: Unstable austenitic stainless steels undergo a strain-induced martensite transformation. The effect of hydrogen on this transformation is not well understood. Some researchers believe that hydrogen makes the transformation to martensite more difficult because hydrogen is an austenite stabilizer. Others believe that hydrogen has little or no effect at all on the transformation and claim that the transformation is simply a function of strain and temperature. Still other researchers believe that hydrogen should increase the ability of the metal to transform due to hydrogen-enhanced dislocation mobility and slip planarity. While the role of hydrogen on the martensite transformation is still debated, it has been experimentally verified that this transformation does occur in hydrogen-charged materials. What is the effect of strain-induced martensite on hydrogen embrittlement? Martensite near crack-tips or other highly strained regions could provide much higher hydrogen diffusivity and allow for quicker hydrogen concentration. Martensite may be more intrinsically brittle than austenite and has been shown to be severely embrittled by hydrogen. However, it does not appear to be a necessary condition for embrittlement since Type 21-6-9 stainless steel is more stable than Type 304L stainless steel but susceptible to hydrogen embrittlement. In this study, the effect of hydrogen on strain-induced martensite formation in Type 304L stainless steel was investigated by monitoring the formation of martensite during tensile tests of as-received and hydrogen-charged samples and metallographically examining specimens from interrupted tensile tests after increasing levels of strain. The effect of hydrogen on the fracture mechanisms was also studied by examining the fracture features of as-received and hydrogen-charged specimens and relating them to the stress-strain behavior.
Date: December 11, 2008
Creator: Morgan, M & Ps Lam, P
Partner: UNT Libraries Government Documents Department


Description: Hydrogen reduces the service life of many metallic components. Such reductions may be manifested as blisters, as a decrease in fatigue resistance, as enhanced creep, as the precipitation of a hydride phase and, most commonly, as unexpected, macroscopically brittle failure. This unexpected, brittle fracture is commonly termed hydrogen embrittlement. Frequently, hydrogen embrittlement occurs after the component has been is service for a period of time and much of the resulting fracture surface is distinctly intergranular. Many failures, particularly of high strength steels, are attributed to hydrogen embrittlement simply because the failure analyst sees intergranular fracture in a component that served adequately for a significant period of time. Unfortunately, simply determining that a failure is due to hydrogen embrittlement or some other form of hydrogen induced damage is of no particular help to the customer unless that determination is coupled with recommendations that provide pathways to avoid such damage in future applications. This paper presents qualitative and phenomenological descriptions of the hydrogen damage processes and outlines several metallurgical recommendations that may help reduce the susceptibility of a particular component or system to the various forms of hydrogen damage.
Date: January 31, 2008
Creator: Louthan, M
Partner: UNT Libraries Government Documents Department

The Effects of Helium Bubble Microstructure on Ductility in Annealed and HERF 21Cr-6Ni-9Mn Stainless Steel

Description: This study examined the effects of microstructure on the ambient temperature embrittlement from hydrogen isotopes and decay helium in 21Cr-6Ni-9Mn stainless steel. Hydrogen and tritium-exposed 21Cr-6Ni-9Mn stainless steel tensile samples were pulled to failure and then characterized by transmission electron microscopy (TEM) and optical microscopy. This study determined that ductility differences between annealed and high-energy-rate-forged (HERF) stainless steel containing tritium and its decay product, helium, could be related to differences in the helium bubble microstructures. The HERF microstructures were more resistant to tritium-induced embrittlement than annealed microstructures because the high number density of helium bubbles on dislocations trap tritium within the matrix and away from the grain boundaries.
Date: January 1, 1998
Creator: Tosten, M.H. & Morgan, M.J.
Partner: UNT Libraries Government Documents Department

A comparison of internal hydrogen embrittlement and hydrogen environment embrittlement of X-750

Description: Hydrogen has been shown to degrade the mechanical properties of nickel-base alloys. This degradation occurs whether the material is in a hydrogen producing environment or if the material has dissolved hydrogen in the metal due to prior exposure to hydrogen. Materials behave differently under these two conditions. Therefore, the degradation due to hydrogen has been split into two categories, internal hydrogen embrittlement (IHE) and hydrogen environment embrittlement (HEE). IHE may be defined as the embrittlement of a material that has been charged with hydrogen prior to testing or service while HEE may be defined by the embrittlement of a material in a hydrogen environment where the hydrogen may come from gaseous hydrogen or generated from a corrosion reaction. This work will compare IHE and HEE of fracture mechanics specimens. Different fugacities of hydrogen for HEE and hydrogen concentrations for IHE were examined for Alloy X-750, a nickel-base super alloy. The test results were analyzed and the role of hydrogen in IHE and HEE was evaluated. A model based on a critical grain boundary hydrogen concentration will be proposed to describe the behavior in both HEE and IHE conditions.
Date: December 1, 1999
Creator: Symons, D.M.
Partner: UNT Libraries Government Documents Department

Fracture toughness of Alloy 690 and EN52 weld in air and water

Description: The effect of low and high temperature water with high hydrogen on the fracture toughness of Alloy 690 and its weld, EN52, was characterized using elastic-plastic J{sub IC} methodology. While both materials display excellent fracture resistance in air and elevated temperature (>93 C) water, a dramatic degradation in toughness is observed in 54 C water. The loss of toughness is associated with a hydrogen-induced intergranular cracking mechanism where hydrogen is picked up from the water. Comparison of the cracking behavior in low temperature water with that for hydrogen-precharged specimens tested in air indicates that the critical local hydrogen content required to cause low temperature embrittlement is on the order of 120 to 160 ppm. Loading rate studies show that the cracking resistance is significantly improved at rates above ca. 1000 MPa{radical}m/h because there is insufficient time to produce grain boundary embrittlement. Electron fractographic examinations were performed to correlate cracking behavior with microstructural features and operative fracture mechanics.
Date: June 1, 1999
Creator: Brown, C.M. & Mills, W.J.
Partner: UNT Libraries Government Documents Department

Hydrogen embrittlement, grain boundary segregation, and stress corrosion cracking of alloy X-750 in low- and high-temperature water

Description: The nature of intergranular stress corrosion cracking (SCC) of alloy X-750 was characterized in low- and high-temperature water by testing as-notched and precracked fracture mechanics specimens. Materials given the AH, BH, and HTH heat treatments were studied. While all heat treatments were susceptible to rapid low-temperature crack propagation (LTCP) below 150 C, conditions AH and BH were particularly susceptible. Low-temperature tests under various loading conditions (e.g., constant displacement, constant load, and increasing load) revealed that the maximum stress intensity factors (K{sub P{sub max}}) from conventional rising load tests provide conservative estimates of the critical loading conditions in highly susceptible heats, regardless of the load path history. For resistant heats, K{sub P{sub max}} provides a reasonable, but not necessarily conservative, estimate of the critical stress intensity factor for LTCP. Testing of as-notched specimens showed that LTCP will not initiate at a smooth surface or notch, but will readily occur if a cracklike defect is present. Comparison of the cracking response in water with that for hydrogen-precharged specimens tested in air demonstrated that LTCP is associated with hydrogen embrittlement of grain boundaries. The stress corrosion crack initiation and growth does occur in high-temperature water (>250 C), but crack growth rates are orders of magnitude lower than LTCP rates. The SCC resistance of HTH heats is far superior to that of AH heats as crack initiation times are two to three orders of magnitude greater and growth rates are one to two orders of magnitude lower.
Date: April 1, 1997
Creator: Mills, W. J.; Lebo, M. R. & Kearns, J. J.
Partner: UNT Libraries Government Documents Department


Description: Comparative finite element modeling simulations of initial intergranular fracture of two iron aluminides (FA186 and FA189) were carried out to study the intrinsic and extrinsic fracture behavior of the alloys as related to hydrogen embrittlement. The computational simulations involved sequentially-coupled stress and mass-diffusion analyses to determine the stress/strain distribution and the extent of hydrogen concentration at the crack tip region. Simulations of initial intergranular fracture of the two alloys under either air or vacuum conditions were conducted. With judicious selection of grain boundary failure strains for each alloy and assumed material degradation at hydrogen diffusion zone, the numerical results agree well with previous experimental test results. We have considered the various methods by which the thermal expansion of Fe{sub 3}Al can be modeled. As a matter of practicality, we have started with a conceptually simple continuum medium modeling, which we have used in initial calculations reported here, despite its limitations in neglecting the effects of optical phonons. This makes the results increasingly suspect for temperatures above the Debye temperature. However, the results we obtain are surprisingly good considering this important limitation. Nevertheless, we regard these results as being suspect. Therefore, in addition, we discuss a wholly new ab-initio-based method which is both more accurate (preserves the ab-initio-generated information) and computationally more efficient. This method can directly transform the all-electron ab initio electronic structure results of the full-potential LMTO electronic structure behavior, computationally provided in reciprocal space, to the real space representation needed for the thermal expansion modeling. An increase of computational speed, use of larger supercells, and more efficient calculations, can all be achieved by using real space (tight-binding (TB)) calculations. The TB parameters are obtained from direct Fourier transform of the matrix elements in momentum space for a specific structure and specific lattice constant. The parameters that may change ...
Date: October 15, 2001
Creator: Cooper, BR
Partner: UNT Libraries Government Documents Department

Fracture behavior of nickel-based alloys in water

Description: The cracking resistance of Alloy 600, Alloy 690 and their welds, EN82H and EN52, was characterized by conducting J{sub IC} tests in air and hydrogenated water. All test materials displayed excellent toughness in air and high temperature water, but Alloy 690 and the two welds were severely embrittled in low temperature water. In 54 C water with 150 cc H{sub 2}/kg H{sub 2}O, J{sub IC} values were typically 70% to 95% lower than their air counterparts. The toughness degradation was associated with a fracture mechanism transition from microvoid coalescence to intergranular fracture. Comparison of the cracking response in water with that for hydrogen-precharged specimens tested in air demonstrated that susceptibility to low temperature cracking is due to hydrogen embrittlement of grain boundaries. The effects of water temperature, hydrogen content and loading rate on low temperature crack propagation were studied. In addition, testing of specimens containing natural weld defects and as-machined notches was performed to determine if low temperature cracking can initiate at these features. Unlike the other materials, Alloy 600 is not susceptible to low temperature cracking as the toughness in 54 C water remained high and a microvoid coalescence mechanism was operative in both air and water.
Date: August 1, 1999
Creator: Mills, W.J. & Brown, C.M.
Partner: UNT Libraries Government Documents Department

Atomistic simulation of the hydrogen-induced fracture process in an iron-based superalloy

Description: Austenitic superalloys exhibit dramatic reductions in ductility and crack growth resistance when high fugacity hydrogen and hydrogen-producing environments trigger a change in fracture mode from microvoid coalescence to slip band and intergranular fracture. Of particular importance is the change to intergranular fracture. We have therefore combined the Embedded Atom Method (EAM) with Monte Carlo simulations and molecular dynamics calculations to help define the effects of hydrogen on segregation and fracture at the atomic level. Nickel was used to simulate the face-centered-cubic austenite lattice while symmetric and asymmetric {sigma}9 tilt boundaries were used to simulate grain boundaries. These simulations show that grain boundaries are strong trap sites for hydrogen. They further show that hydrogen dramatically reduces the bond strength between atoms at grain boundary sites while inhibiting dislocation generation.
Date: December 31, 1995
Creator: Moody, N.R.; Foiles, S.M.; Baskes, M.I. & Angelo, J.E.
Partner: UNT Libraries Government Documents Department

Characterization of stainless steel 304 tubing

Description: Earlier studies have shown that stainless steel 304 (SS304) containing martensite is susceptible to hydrogen embrittlement. This generated concern regarding the structural integrity of SS304 tubing we use in the W87 pit tube. During surveillance operations, the pit tube undergoes a series of bending and straightening as it goes through a number of surveillance cycles. This motivated the study to characterize austenitic SS304 tubing obtained from Rocky Flats. The tubes continued to display structural soundness even after numerous repeated bending and straightening cycles. The minimum and maximum number of bends to failure occurred after 13 and 16 cycles, respectively. After 5 bends, both the inner and outer surfaces of the tubing showed no microcracks. When the bent tubing samples were pressurized and tested using deuterium at 74{degrees}C and at {approximately}78{degrees}C, they failed away from the bent area. Thus deuterium embrittlement of the bent SS304 tubing should not be a problem. Moreover, to increase our 95% confidence level to 5 bends, we are planning to perform at least four additional bends to failure tests.
Date: October 16, 1995
Creator: Sunwoo, A.J.; Brooks, M.A. & Kervin, J.E.
Partner: UNT Libraries Government Documents Department


Description: The purpose and scope of this analysis/model report is to analyze the degradation of commercial spent nuclear fuel (CSNF) cladding under repository conditions by the hydride-related metallurgical processes, such as delayed hydride cracking (DHC), hydride reorientation and hydrogen embrittlement, thereby providing a better understanding of the degradation process and clarifying which aspects of the process are known and which need further evaluation and investigation. The intended use is as an input to a more general analysis of cladding degradation.
Date: December 12, 2000
Creator: McCoy, K.
Partner: UNT Libraries Government Documents Department

Microstructure and Corrosion Behavior of the Cu-Pd-X Ternary Alloys for Hydrogen Separation Membranes

Description: CuPd alloys are among the most promising candidate materials for hydrogen separation membranes and membrane reactor applications due to their high hydrogen permeability and better sulfur resistance. In order to reduce the Pd content and, therefore, the cost of the membrane materials, efforts have been initiated to develop CuPdM ternary alloys having a bcc structure. The advantages of having Pd as a hydrogen separation membrane are: (1) high hydrogen selectivity; and (2) high hydrogen permeability. The disadvantages are: (1) high cost; (2) hydrogen embrittlement ({alpha} {yields} {beta} Pd hydride); and (3) sulfur poisoning. Experiments (XRD, SEM/EDS) verified that Mg, Al, La, Y and Ti are promising alloying elements to expand the B2 phase region in Cu-Pd binary system. HT-XRD showed that the B2 to FCC transition temperatures for Cu-Pd-X (X = Mg, Al, La, Y and Ti) are higher than that of Cu-Pd binary alloys. While the Cu-50Pd alloy had the highest corrosion resistance to the H2S containing syngas, the Cu-Pd-Mg alloy had a comparable resistance.
Date: February 26, 2012
Creator: Dogan, O.N.; Gao, M.C. & Howard, B.H.
Partner: UNT Libraries Government Documents Department