864 Matching Results

Search Results

Advanced search parameters have been applied.

Graphite technology development plan

Description: This document presents the plan for the graphite technology development required to support the design of the 350 MW(t) Modular HTGR within the US National Gas-Cooled Reactor Program. Besides descriptions of the required technology development, cost estimates, and schedules, the plan also includes the associated design functions and design requirements.
Date: July 1, 1986
Partner: UNT Libraries Government Documents Department

Graphite criteria peer review

Description: This report documents a review of the stress criteria proposed for the graphite components of the modular high temperature gas-cooled reactor (MHTGR) core. The review was conducted by a panel of six independent consultants, chosen for their expertise over a range of relevant disciplines.
Date: September 1, 1986
Partner: UNT Libraries Government Documents Department

H-451 graphite irradiation creep design model; Revision 1

Description: Available irradiation creep data on H-451 graphite area analyzed and fitted to the proposed creep model in a standard linear solid (a linear viscoelastic model). A creep equation is obtained and recommended for preliminary design use. It is found that the regression is significant and the creep equation is a good predictor. The standard error (SE) of the estimate is smaller than that used in the core graphite criteria development. This smaller SE shall be used in all future work related to criteria development. The creep coefficient and/or model can be further improved if additional creep data can be obtained. For this purpose several creep experiments are recommended. The immediate one is to capsule 87M-2A currently under design.
Date: July 1, 1988
Partner: UNT Libraries Government Documents Department

HTGR Measurements and Instrumentation Systems

Description: This report provides an integrated overview of measurements and instrumentation for near-term future high-temperature gas-cooled reactors (HTGRs). Instrumentation technology has undergone revolutionary improvements since the last HTGR was constructed in the United States. This report briefly describes the measurement and communications needs of HTGRs for normal operations, maintenance and inspection, fuel fabrication, and accident response. The report includes a description of modern communications technologies and also provides a potential instrumentation communications architecture designed for deployment at an HTGR. A principal focus for the report is describing new and emerging measurement technologies with high potential to improve operations, maintenance, and accident response for the next generation of HTGRs, known as modular HTGRs, which are designed with passive safety features. Special focus is devoted toward describing the failure modes of the measurement technologies and assessing the technology maturity.
Date: May 2012
Creator: Ball, Sydney J.; Holcomb, David Eugene & Cetiner, Mustafa Sacit
Partner: UNT Libraries Government Documents Department

Makeup water treatment and auxiliary boiler building structural design description: 4 x 350 MW(t) Modular HTGR [High-Temperature Gas-Cooled Reactor] Plant

Description: The Makeup Water Treatment and Auxiliary Boiler Building (MWABB) is a grade-founded, single-story, steel-framed structure with insulated sheet metal exterior walls and roof decking. It houses the electrically-heated auxiliary boiler and related equipment, and the Raw Water Treatment System. The Makeup Water Treatment and Auxiliary Boiler building is located adjacent to the Maintenance Building in the Energy Conversion Area of the plant.
Date: June 1, 1986
Partner: UNT Libraries Government Documents Department

Helium Storage and Transfer Subsystem design description. Revision

Description: The Helium Storage and Transfer Subsystem (HSTS) consists of two parts. The first consists of nine (9) high pressure storage tanks containing helium at 15.6 MPa (2250 psig). These tanks provide makeup and purge helium at a rate of 1216 kg per y (2680 lb/y) to the various helium users, including circulator bearing seals, analysis packages, and cooling system surge tanks. The second, larger part of the system, provides for the low pressure storage of 6078 kg (13,400 lb) of primary coolant helium in 180 storage tanks at 7.0 MPa (1000 psig). The system serves all four (4) reactor modules. The low pressure storage part of the system receives helium from the discharge of Helium Purification Subsystem (HPS) and is activated during depressurization and pumpup operations only. It is not required to operate continuously. Storage capacity is provided for primary helium coolant from two reactor modules. However, since depressurization and pumpup operations are performed for only one reactor module at a time, two 50% capacity low pressure transfer compressors are provided having a total transfer capacity of 340 am{sup 3}/h (200 acfm) which is sufficient to service one module. High pressure helium is supplied continuously to all the four reactor modules simultaneously from the high pressure storage tanks. These tanks are replaced periodically with fresh tanks.
Date: July 1, 1987
Partner: UNT Libraries Government Documents Department

Security monitoring subsystem design description: 4 x 350 MW(t) Modular HTGR [High-Temperature Gas-Cooled Reactor] Plant

Description: Security Monitoring acquires and processes sensor data for use by security personnel in the performance of their function. Security Monitoring is designed and implemented as a part of an overall security plan which is classified as Safeguards Information under 10CFR73.21.
Date: June 1, 1986
Partner: UNT Libraries Government Documents Department

Hot Service Facility subsystem design description. Revision

Description: The Hot Service Facility Subsystem, which is also referred to as the Reactor Equipment Service Facility (RESF), is located in an environmentally controlled shielded vault and provides inspection, maintenance, care, and repair of reactor service equipment and tools. The shielded vault is located in the Reactor Service Building.
Date: July 1, 1987
Partner: UNT Libraries Government Documents Department

Maintenance building structural design description: 4 x 350 MW(t) Modular HTGR [High-Temperature Gas-Cooled Reactor] Plant

Description: The Maintenance Building is a grade-founded, two-story, steel-framed structure, located adjacent to the Turbine Building in the Energy Conversion Area. It has a reinforced concrete foundation and slab on grade, and insulated sheet metal exterior walls and roof decking.
Date: June 1, 1986
Partner: UNT Libraries Government Documents Department

HVAC [Heating, Ventilation and Air Conditioning] subsystem design description: 4 x 350 MW(t) Modular HTGR [High-Temperature Gas-Cooled Reactor] Plant

Description: The HVAC system is a subsystem within the Mechanical Services Group (MSG). The HVAC system for the 4 x 350 MW(t) Modular HTGR Plant presently consists of ten, nonsafety-related subsystems located in the Nuclear Island (NI) and Energy Conversion Area (ECA) of the plant.
Date: June 1, 1986
Partner: UNT Libraries Government Documents Department

Utility/user requirements for the Modular High Temperature Gas-Cooled Reactor Plant

Description: The purpose of this document is to set forth the top level Utilty/User requirements for a Modular High Temperature Gas-Cooled Reactor electric generating plant that incorporates 4 reactors and 2 turbine-generators to produce a nominal electrical output of 550 MW net.
Date: June 1, 1987
Creator: Swart, F.E.
Partner: UNT Libraries Government Documents Department

Highlights of GE-NMPO research (CY 1964). Part B

Description: Research on materials and components for high-temperature reactors is summarized. The work is centered on studies of substoichiometric urania and urania solid solutions above 1800 deg C and their compatibility with refractory metals; development of refractory-metal fuel element materials capable of operation above 1800 deg C in nonoxidizing atmospheres; development of reactor control, reflector, and shield materials, stabilization of UO/sub 2/ in ceramic fuel elements to extend high-temperature highburnup capabilities; stability of high-melting carbides and borides in high-temperature gaseous environments; and coated-fuel particle development and evaluation. (JRD)
Date: March 1, 1965
Partner: UNT Libraries Government Documents Department

Multiaxial graphite test specimen

Description: A multiaxial test program is to be conducted by Oak Ridge National Laboratory (ORNL) on the core component graphite. The objectives of the tests are to obtain failure data under uniaxial and biaxial states of stress in order to construct a failure surface in a two-dimensional stress space. These data will be used in verifying the accuracy of the maximum stress failure theory being proposed for use in designing the core graphite components. Tubular specimens are proposed to be used and are either loaded axially and/or subjected to internal pressure. This report includes a study on three specimen configurations. The conclusions of that study indicate that an elliptical transition geometry procedures the smallest discontinuity effects. Several loading combustions were studied using the elliptical transition specimen. The primary purpose is to establish the location of the highest stress state and its relation to the gage section for all of the loading conditions. The tension/internal pres sure loading condition (1:1) indicated that the high stress area is just outside the gage section but still should be acceptable. 5 refs., 18 figs.
Date: September 1, 1988
Partner: UNT Libraries Government Documents Department

Physics of gas cooled reactors

Description: From meeting on new developments in reactor physics and shieiding calculations; Lake Kiamesha, New York, USA (12 Sep The temperature coefficient of the HTOR is composed of a strong negative Doppler coefficient and a positive moderator coefficient, the net effect being about -10 x 10/sup -5// deg C at operating temperature. the positive moderator coefficient is a result of the absence of significant density coefficients and the nuclear characteristics of U- 233. In addition, selected iission products, principally Xe-135, contribute positive components to the temperature coefficient. Current estimates of the value of the temperature coefficient in the HTGR are presented along with recent experimental data pertinent to the subject. (11 references) (auth)
Date: July 15, 1972
Creator: Dahlberg, R.C.
Partner: UNT Libraries Government Documents Department

High-temperature nuclear reactors as an energy source for hydrogen production

Description: From hydrogen economy Miami energy conference; Miami Beach, Florida, USA (18 Mar 1974). Application of current high-temperature reactor technology to hydrogen production is reviewed. The requirements and problems of matching a thermochemical hydrogen production cycle to a nuclear heat source are discussed. Possibilities for extending the temperature of reactors upward are outlined. The major engineering problem is identified as the development of a high-temperature process heat exchanger separating the nuclear heat source from the chemical process. (auth)
Date: January 1, 1974
Creator: Balcomb, J.D. & Booth, L.A.
Partner: UNT Libraries Government Documents Department

NGNP Research and Development Status

Description: At the inception of the Next Generation Nuclear Plant (NGNP) project, experts from the Department of Energy (DOE) national laboratories, gas reactor vendors, and universities collaborated to establish technology research and development (R&D) roadmaps. These roadmaps outlined the testing and computational development activities needed to qualify the materials and validate the modeling and simulation tools to be used in the design and safe operation of the NGNP, a helium-cooled, high temperature gas reactor (HTGR).
Date: August 1, 2010
Creator: Petti, David A.
Partner: UNT Libraries Government Documents Department

Circulating water subsystem design description: 4 x 350 MW(t) Modular HTGR [High-Temperature Gas-Cooled Reactor] Plant

Description: The Circulating Water System is a subsystem within the Heat Rejection Group (HRG). The Circulating Water System consists of two independent loops to remove waste heat from the turbine building closed cooling water system and from the condensers associated with each turbine generator set. In normal plant operation circulating water is pumped from the cooling tower basin through the condensers and heat exchangers and back to the cooling tower where the waste heat is released to the atmosphere via mechanical draft cooling towers. The system consists of two flow paths with two half-size, vertical pumps associated with each path.
Date: June 1, 1986
Partner: UNT Libraries Government Documents Department

Class 1E dc power subsystem design description: 4 x 350 MW(t) Modular HTGR [High-Temperature Gas-Cooled Reactor] Plant

Description: The Class 1E DC Power System of the Electrical Group provides reliable and regulated 125 V dc electric power to the plant safety-related dc loads connected to the Four redundant and independent 125 V dc Class 1E buses to ensure plant safe shutdown or mitigate the effects of a design basis event. These four dc buses comprise the plant four Class 1E dc control and instrument channels (A, B, C and D).
Date: June 1, 1986
Partner: UNT Libraries Government Documents Department

Pressure relief subsystem design description

Description: The primary function of the Pressure Relief Subsystem, a subsystem of the Vessel System, is to provide overpressure protection to the Vessel System. When the overpressure setpoint is reached, pressure is reduced by permitting the flow of primary coolant out of the Vessel System. This subsystem also provides the flow path by which purified helium is returned to the vessel system, either as circulating purge/flow from the Helium Purification Subsystem or make-up helium from the Helium Storage and Transfer Subsystem.
Date: July 1, 1986
Partner: UNT Libraries Government Documents Department

Vessel support subsystem design description. Revision 1

Description: The Vessel Support Subsystem is one of three subsystems comprising the Vessel System of the Modular High Temperature Gas-Cooled Reactor 4 x 350 MW(t) Plant. The design of this subsystem has been developed by means of the Integrated Approach. This document establishes the functions and system design requirements of the Vessel Support Subsystem from the Functional Analysis, and includes institutional requirements from the Overall Plant Design Specification and the Vessel System Design Description. A description of the subsystem design which satisfies these requirements is presented. Lower-tier requirements at the subsystem level are next defined for the component design. This document also includes information on aspects of subsystem construction, operation, maintenance, and decommissioning.
Date: July 1, 1987
Creator: Perry, R.A. & Mehta, D.D.
Partner: UNT Libraries Government Documents Department

New concept of small power reactor without on-site refueling for non-proliferation

Description: Energy demand in developing countries is increasing to support growing populations and economies. This demand is expected to continue growing at a rapid pace well into the next century. Because current power sources, including fossil, renewable, and nuclear, cannot meet energy demands, many developing countries are interested in building a new generation of small reactor systems to help meet their needs. The U.S. recognizes the need for energy in the developing countries. In its 1998 Comprehensive Energy Strategy, the Department of Energy calls for research into low-cost, proliferation- resistant, nuclear reactor technologies to ensure that this demand can be met in a manner consistent with U.S. non-proliferation goals and policies. This research has two primary thrusts: first, the development of a small proliferation-resistant nuclear system (i.e., a technology focus); second, the continuation of open communication with the international community through early engagement and cooperation on small reactor development. A system that meets developing country requirements must: (1) achieve reliably safe operation with a minimum of maintenance and supporting infrastructure; (2) offer economic competitiveness with alternative energy sources available to the candidate sites; and (3) demonstrate significant improvements in proliferation resistance relative to existing reactor systems. These challenges are the most significant driving forces behind the LLNL proposed program for development of a new, small nuclear reactor system. This report describes a technical approach for developing small nuclear power systems for use in developing countries. The approach being proposed will establish a preliminary set of requirements that, if met, will cause new innovative approaches to system design to be used. The proposed approach will borrow from experience gained over the past forty years with four types of nuclear reactor technologies (LWR, LMR, HTGR, and MSR) to develop four or more pre-conceptual designs. The pre-conceptual designs will be used to confirm the ...
Date: July 13, 1998
Creator: Brown, N.W., LLNL
Partner: UNT Libraries Government Documents Department