4 Matching Results

Search Results

Advanced search parameters have been applied.

Final Technical Report - 300°C Capable Electronics Platform and Temperature Sensor System For Enhanced Geothermal Systems

Description: A silicon carbide (SiC) based electronic temperature sensor prototype has been demonstrated to operate at 300°C. We showed continuous operation of 1,000 hours with SiC operational amplifier and surface mounted discreet resistors and capacitors on a ceramic circuit board. This feasibility demonstration is a major milestone in the development of high temperature electronics in general and high temperature geothermal exploration and well management tools in particular. SiC technology offers technical advantages that are not found in competing technologies such as silicon-on-insulator (SOI) at high temperatures of 200°C to 300°C and beyond. The SiC integrated circuits and packaging methods can be used in new product introduction by GE Oil and Gas for high temperature down-hole tools. The existing SiC fabrication facility at GE is sufficient to support the quantities currently demanded by the marketplace, and there are other entities in the United States and other countries capable of ramping up SiC technology manufacturing. The ceramic circuit boards are different from traditional organic-based electronics circuit boards, but the fabrication process is compatible with existing ceramic substrate manufacturing. This project has brought high temperature electronics forward, and brings us closer to commercializing tools that will enable and reduce the cost of enhanced geothermal technology to benefit the public in terms of providing clean renewable energy at lower costs.
Date: November 30, 2012
Creator: Chen, Cheng-Po; Shaddock, David; Sandvik, Peter; Saia, Rich; Amita Patil, Alexey Vert & Zhang, Tan
Partner: UNT Libraries Government Documents Department

Elimination of Heat-Shielding for Geothermal Tools Operating Up To 300 Degress Celsius

Description: This report focuses Sandia National Laboratories' effort to create high-temperature logging tools for geothermal applications not requiring heat-shielding. Tool electronics can operate up to 300 C with a few limiting components operating to 250 C. Second generation electronics are needed to increase measurement accuracy and extend the operating range to 300 and then 350 C are identified. Custom development of high-temperature batteries and assembling techniques are touched on. Outcomes of this work are discussed and new directions for developing high-temperature industry are suggested.
Date: October 7, 1999
Creator: HENFLING,JOSEPH A. & NORMANN,RANDY A.
Partner: UNT Libraries Government Documents Department

Universal Converter Using SiC

Description: The grantee designed a high power (over 1MW) inverter for use in renewable and distributed energy systems, such as PV cells, fuel cells, variable speed wind turbines, micro turbines, variable speed gensets and various energy storage methods. The inverter uses 10,000V SiC power devices which enable the use of a straight-forward topology for medium voltage (4,160VAC) without the need to cascade devices or topologies as is done in all commercial, 4,160VAC inverters today. The use of medium voltage reduces the current by nearly an order of magnitude in all current carrying components of the energy system, thus reducing size and cost. The use of SiC not only enables medium voltage, but also the use of higher temperatures and switching frequencies, further reducing size and cost. In this project, the grantee addressed several technical issues that stand in the way of success. The two primary issues addressed are the determination of real heat losses in candidate SiC devices at elevated temperature and the development of high temperature packaging for SiC devices.
Date: January 1, 2007
Creator: Marckx, Dallas; Ratliff, Brian; Jain, Amit & Jones, Matthew
Partner: UNT Libraries Government Documents Department

Boron Nitride Capacitors for Advanced Power Electronic Devices

Description: This project fabricates long-life boron nitride/boron oxynitride thin film -based capacitors for advanced SiC power electronics with a broad operating temperature range using a physical vapor deposition (PVD) technique. The use of vapor deposition provides for precise control and quality material formation.
Date: November 1, 2010
Creator: Badi, N.; Starikov, D.; Boney, C.; Bensaoula, A. & Johnstone, D.
Partner: UNT Libraries Government Documents Department