299 Matching Results

Search Results

Advanced search parameters have been applied.

Neutron-antineutron transition search at HFIR Reactor

Description: A new experiment to search for neutron-antineutron transitions was recently proposed for High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). In this paper the physics motivation of a new search, the scheme and the discovery potential of the proposed HFIR-based experiment are discussed.
Date: August 1, 1997
Creator: Kamyshkov, Y.A.
Partner: UNT Libraries Government Documents Department

Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

Description: An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.
Date: May 1, 2011
Creator: Ilas, Germina & Primm, Trent
Partner: UNT Libraries Government Documents Department

Fuel Grading Study on a Low-Enriched Uranium Fuel Design for the High Flux Isotope Reactor

Description: An engineering design study that would enable the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium fuel is ongoing at Oak Ridge National Laboratory. The computational models used to search for a low-enriched uranium (LEU) fuel design that would meet the requirements for the conversion study, and the recent results obtained with these models during FY 2009, are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating high-enriched uranium fuel core. These studies indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations.
Date: November 1, 2009
Creator: Ilas, Germina & Primm, Trent
Partner: UNT Libraries Government Documents Department

Neutron Spectral Brightness of Cold Guide 4 at the High Flux Isotope Reactor

Description: The High Flux Isotope Reactor resumed operation in June of 2007 with a super-critical hydrogen cold source in horizontal beam tube 4. Cold guide 4 is a guide system designed to deliver neutrons from this source at reasonable flux at wavelengths greater than 4 Å to several instruments, and includes a 15-m, 96-section, 4-channel bender. A time-of-flight spectrum with calibrated detector was recorded at port C of cold guide 4, and compared to McStas simulations, to generate a brightness spectrum.
Date: May 3, 2009
Creator: Winn,B.L.; Robertson, J.L.; Iverson, E.B. & Selby, D.L.
Partner: UNT Libraries Government Documents Department

Neutron scattering at the high flux isotope reactor at Oak Ridge National Laboratory

Description: Since its beginnings in Oak Ridge and Argonne in the late 1940`s, neutron scattering has been established as the premier tool to study matter in its various states. Since the thermal neutron wavelength is of the same order of magnitude as typical atomic spacings and because they have comparable energies to those of atomic excitations in solids, both structure and dynamics of matter can be studied via neutron scattering. The High Flux Isotope Reactor (HFIR) provides an intense source of neutrons with which to carry out these measurements. This paper summarizes the available neutron scattering facilities at the HFIR.
Date: March 1, 1995
Creator: Yethiraj, M. & Fernandez-Baca, J.A.
Partner: UNT Libraries Government Documents Department

Simultaneous neutron and gamma spectrum adjustment

Description: The spectrum adjustment procedure was extended to simultaneous neutron and gamma spectrum adjustment, and the feasibility of this technique is demonstrated in the analysis of HFIR dosimetry experiments. Conditions in which gamma rays may contribute considerably to radiation damage in steels are discussed. Beryllium helium accumulation fluence monitors (HAFMs) were found to be good monitors in gamma fields of intensities high enough to contribute to steel embrittlement. Use of {sup 237}Np, {sup 238}U, and {sup 9}Be HAFM as gamma dosimeters is proposed for high-dose irradiations in high-energy, high-intensity gamma fields.
Date: October 1, 1996
Creator: Remec, I.
Partner: UNT Libraries Government Documents Department

HFIR Vessel Probabilistic Fracture Analysis, Considering Success of Hydrostatic Proof Tests

Description: Periodic hydrostatic proof testing and probabilistic fracture mechanics analyses are performed to demonstrate the structural integrity and useful life of the High Flux Isotope Reactor (HFIR) pressure vessel. Calculations of the hydro-test conditions (pressure, temperature, and frequency) and of the probability of failure account for vessel degradation (flaw growth and radiation-induced embrittlement) that takes place between tests and of the credible worst-case-operating condition. The specified useful life of the vessel is limited by specified maximum permissible calculated probabilities of failure for hydro-test and worst-case-operating conditions. The probability of failure can be calculated with or without accounting for the success (absence of failure) of a test, but if success is accounted for, the calculated probabilities are less and thus the maximum permissible life greater. This report describes a simple method for including the success of a test.
Date: January 1, 1999
Creator: Cheverton, R.D.
Partner: UNT Libraries Government Documents Department

Upgrade of the wide-angle neutron diffractometer at the high flux isotope reactor

Description: The Wide-Angle Neutron Diffractometer (WAND) is a flat-cone geometry diffractometer located at the High Flux Reactor (HFIR). This instrument is currently being upgraded. The central part of this upgrade is the development of a new curved one-dimensional position sensitive detector which covers a 125 degree angular range with an effective radius of 71 cm. This detector will be a multi-anode (624 anodes on a 0.2 degree pitch) {sup 3}He gas-filled proportional counter. This totally new system will give high resolution, good uniformity and high counting range - a maximum capability of 10{sup 5} cps/pixel and a 10{sup 7} cps overall. A prototype of this detector has shown that these design targets can be met. The new WAND will greatly broaden its capabilities for single-crystal diffraction experiments and for time-resolved measurements.
Date: July 15, 1997
Creator: Katano, S.; Morii, Y. & Child, H.R.
Partner: UNT Libraries Government Documents Department

An evaluation of life extension of the HFIR pressure vessel. Supplement 1

Description: Preliminary analyses were performed in 1994 to determine the remaining useful life of the HFIR pressure vessel. The estimated total permissible life was {approximately} 50 EFPY (100 MW). More recently, the analyses have been updated, including a more precise treatment of uncertainties in the calculation of the hydrostatic-proof-test conditions and also including the contribution of gammas to the radiation-induced reduction in fracture toughness. These and other refinements had essentially no effect on the predicted useful life of the vessel or on the specified hydrostatic proof-test conditions.
Date: August 1, 1996
Creator: Cheverton, R.D.
Partner: UNT Libraries Government Documents Department

Closed-loop step motor control using absolute encoders

Description: A multi-axis, step motor control system was developed to accurately position and control the operation of a triple axis spectrometer at the High Flux Isotope Reactor (HFIR) located at Oak Ridge National Laboratory. Triple axis spectrometers are used in neutron scattering and diffraction experiments and require highly accurate positioning. This motion control system can handle up to 16 axes of motion. Four of these axes are outfitted with 17-bit absolute encoders. These four axes are controlled with a software feedback loop that terminates the move based on real-time position information from the absolute encoders. Because the final position of the actuator is used to stop the motion of the step motors, the moves can be made accurately in spite of the large amount of mechanical backlash from a chain drive between the motors and the spectrometer arms. A modified trapezoidal profile, custom C software, and an industrial PC, were used to achieve a positioning accuracy of 0.00275 degrees of rotation. A form of active position maintenance ensures that the angles are maintained with zero error or drift.
Date: August 1, 1997
Creator: Hicks, J.S. & Wright, M.C.
Partner: UNT Libraries Government Documents Department

The High Flux Isotope Reactor (HFIR) cold source project at ORNL

Description: The scope of this project includes the development, design, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube hole in the pressure vessel. All aspects of the cold source design will be based on demonstrated technology adapted to the HFIR design and operating conditions.
Date: May 1, 1998
Creator: Selby, D.
Partner: UNT Libraries Government Documents Department

Prospects for neutron-antineutron transition search

Description: Presently-available sources of free neutrons can allow an improvement in the discovery potential of a neutron-antineutron transition search by four orders of magnitude as compared to that of the most recent reactor-based search experiment performed at ILL in Grenoble. This would be equivalent to a characteristic neutron-antineutron transition time limit of >10{sup 10} seconds. With future dedicated neutron-source Facilities, with further progress in cold-neutron- moderator techniques, and with a vertical experiment layout, the discovery potential could ultimately be pushed by another factor of {approximately}100 corresponding to a characteristic transition time limit of {approximately}10{sup 11} seconds. Prospects for, and relative merits of, a neutron-antineutron oscillation search in intranuclear transitions are also discussed.
Date: December 31, 1996
Creator: Kamyshkov, Y.
Partner: UNT Libraries Government Documents Department

High Flux Isotope Reactor cold neutron source reference design concept

Description: In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.
Date: May 1, 1998
Creator: Selby, D.L.; Lucas, A.T. & Hyman, C.R.
Partner: UNT Libraries Government Documents Department

Materials Selection for the HFIR Cold Neutron Source

Description: In year 2002 the High Flux Isotope Reactor (HFIR) will be fitted with a source of cold neutrons to upgrade and expand its existing neutron scattering facilities. The in-reactor components of the new source consist of a moderator vessel containing supercritical hydrogen gas moderator at a temperature of 20K and pressure of 15 bar, and a surrounding vacuum vessel. They will be installed in an enlarged beam tube located at the site of the present horizontal beam tube, HB-4; which terminates within the reactor's beryllium reflector. These components must withstand exceptional service conditions. This report describes the reasons and factors underlying the choice of 6061-T6 aluminum alloy for construction of the in-reactor components. The overwhelming considerations are the need to minimize generation of nuclear heat and to remove that heat through the flowing moderator, and to achieve a minimum service life of about 8 years coincident with the replacement schedule for the beryllium reflector. 6061-T6 aluminum alloy offers the best combination of low nuclear heating, high thermal conductivity, good fabricability, compatibility with hydrogen, superior cryogenic properties, and a well-established history of satisfactory performance in nuclear environments. These features are documented herein. An assessment is given of the expected performance of each component of the cold source.
Date: August 24, 2001
Creator: Farrell, K.
Partner: UNT Libraries Government Documents Department

Neutron spectra at different High Flux Isotope Reactor (HFIR) pressure vessel surveillance locations

Description: This project addresses the potential problem of radiation embrittlement of reactor pressure vessel (RPV) supports. Surveillance specimens irradiated at the High Flux Isotope Reactor (HFIR) at relatively low neutron flux levels (about 1.5E + 8 cm{sup {minus}2}.s{sup {minus}1}) and low temperatures (about 50{degrees}C) showed embrittlement more rapidly than expected. Commercial power reactors have similar flux levels and temperatures at the level vessel support structures. The purposes of this work are to provide the neutron fluence spectra data that are needed to evaluate previously measured mechanical property changes in the HFIR, to explain the discrepancies in neutron flux levels between the nickel dosimeters and two other dosimeters, neptunium and beryllium, and to address any questions or peculiarities of the HFIR reactor environment. The current work consists of neutron and gamma transport calculations, dosimetry measurements, and least-squares logarithmic adjustment to obtain the best estimates for the neutron spectra and the related neutron exposure parameters. The results indicate that the fission rates in neptunium-237 (Np-237) and uranium-238 (U-238) and the helium production rates in beryllium-9 (Be-9) are dominated by photo-induced reactions. The displacements per atom rate for iron (dpa/s) from gamma rays is five times higher than the dpa/s from neutrons. The neutron fluxes in key 7, position 5 do not show any significant gradient in the surveillance capsule, but key 4 and key 2 showed differences in magnitude as well as in the shape of the spectrum. The stainless steel monitor in the V-notch of the Charpy specimens of the surveillance capsules is adequate to determine the neutron flux above 1.0 MeV at the desired V-notch location. Simultaneous adjustment of neutron and gamma fluxes with the measurements has been demonstrated and should avoid future problems with photo-induced reactions.
Date: December 1, 1993
Creator: Remec, I. & Kam, F.B.
Partner: UNT Libraries Government Documents Department

Thermal-Hydraulic Bases for the Safety Limits and Limiting Safety System Settings for HFIR Operation at 100 MW and 468 psig Primary Pressure, Using Specially Selected Fuel Elements

Description: This report summarizes thermal hydraulic analyses performed to support HFIR operation at 100 MW and 468 psig pressure using specially selected fuel elements. The analyses were performed with the HFIR steady state heat transfer code, originally developed during HFIR design. This report addresses the increased core heat removal capability which can be achieved in fuel elements having coolant channel thicknesses that exceed the minimum requirements of the HFIR fuel fabrication specifications. Specific requirements for the minimum value of effective uniform as-built coolant channel thickness are established for fuel elements to be used at 100 MW. The burnout correlation currently used in the steady-state heat transfer code was also compared with more recent experimental results for stability of high-velocity flow in narrow heated channels, and the burnout correlation was found to be conservative with respect to flow stability at typical HFIR hot channel exit conditions at full power.
Date: September 1, 1998
Creator: Rothrock, R.B.
Partner: UNT Libraries Government Documents Department

UA/ORNL Collaboration: Neutron Scattering Studies of Antiferromagnetic Films, Final Report

Description: The work reported here was a collaborative project between the research groups of Dr. J.L. Robertson at Oak Ridge National Laboratory and Dr. G.J. Mankey at the University of Alabama. The main thrust is developing neutron optical devices and materials for the study of magnetic thin films and interfaces. The project is particularly timely, since facility upgrades are currently underway at the High Flux Isotope Reactor. A new neutron optical device, a multicrystal analyzer, was designed and built to take maximum advantage of the increased flux that the upgraded beamlines at HFIR will provide. This will make possible detailed studies of the magnetic structure of thin films, multilayers, and interfaces that are not feasible at present. We performed studies of the antiferromagnetic order in thin films and crystals using neutron scattering, determined magnetic structures at interfaces with neutron reflectometry and measured order in magnetic dispersions using small angle neutron scattering. The collaboration has proved fruitful: generating eleven publications, contributing to the training of a postdoc who is now on staff at the High Flux Isotope Reactor and providing the primary support for two recent Ph.D. recipients. The collaboration is still vibrant, with anticipated implementation of the multicrystal analyzer on one of the new cold source beamlines at the High Flux Isotope Reactor.
Date: July 26, 2006
Creator: Mankey, Gary J.
Partner: UNT Libraries Government Documents Department

2D Thermal Hydraulic Analysis and Benchmark in Support of HFIR LEU Conversion using COMSOL

Description: The research documented herein was funded by a research contract between the Research Reactors Division (RRD) of Oak Ridge National Laboratory (ORNL) and the University of Tennessee, Knoxville (UTK) Mechanical, Aerospace and Biomedical Engineering Department (MABE). The research was governed by a statement of work (SOW) which clearly defines nine specific tasks. This report is outlined to follow and document the results of each of these nine specific tasks. The primary goal of this phase of the research is to demonstrate, through verification and validation methods, that COMSOL is a viable simulation tool for thermal-hydraulic modeling of the High Flux Isotope Reactor (HFIR) core. A secondary goal of this two-dimensional phase of the research is to establish methodology and data base libraries that are also needed in the full three-dimensional COMSOL simulation to follow. COMSOL version 3.5a was used for all of the models presented throughout this report.
Date: September 1, 2010
Creator: Freels, James D; Bodey, Isaac T; Lowe, Kirk T & Arimilli, Rao V
Partner: UNT Libraries Government Documents Department

Research reactors - an overview

Description: A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.
Date: March 1, 1997
Creator: West, C.D.
Partner: UNT Libraries Government Documents Department

Search for Neutron to Anti-Neutron Transitions at HFIR/ORNL

Description: The transition of neutron to anti-neutron might be the first observed signal of the baryon instability long-awaited in Grand Unification models and required for the explanation of baryon asymmetry in the universe. A newly-proposed experiment to search for neutron-antineutron transitions at High Flux Isotope Reactor at Oak Ridge National Laboratory can improve the discovery potential by factor of {approximately} 1,000 relative to the existing limits. Further prospects of n -> n(overbar) search are also discussed in this paper.
Date: October 22, 1998
Creator: Kamyshkov, Y.
Partner: UNT Libraries Government Documents Department

Impact induced response spectrum for the safety evaluation of the high flux isotope reactor

Description: The dynamic impact to the nearby HFIR reactor vessel caused by heavy load drop is analyzed. The impact calculation is carried out by applying the ABAQUS computer code. An impact-induced response spectrum is constructed in order to evaluate whether the HFIR vessel and the shutdown mechanism may be disabled. For the frequency range less than 10 Hz, the maximum spectral velocity of impact is approximately equal to that of the HFIR seismic design-basis spectrum. For the frequency range greater than 10 Hz, the impact-induced response spectrum is shown to cause no effect to the control rod and the shutdown mechanism. An earlier seismic safety assessment for the HFIR control and shutdown mechanism was made by EQE. Based on EQE modal solution that is combined with the impact-induced spectrum, it is concluded that the impact will not cause any damage to the shutdown mechanism, even while the reactor is in operation. The present method suggests a general approach for evaluating the impact induced damage to the reactor by applying the existing finite element modal solution that has been carried out for the seismic evaluation of the reactor.
Date: May 1, 1997
Creator: Chang, S.J.
Partner: UNT Libraries Government Documents Department

Neutron dosimetry of the HFIR hydraulic facility

Description: The total, fast, and thermal neutron fluxes at five axial positions in the High Flux Isotope Reactor (HFIR) hydraulic tube have been measured using bare and/or cadmium-covered activation, fission, and helium accumulation flux monitors. The spectrum-averaged, one-group cross sections over selected energy ranges for the reactions used in the measurements were obtained using cross sections from the ENDF/B-V file, and the target region volume-integrated spectrum was calculated with DORT, a two-dimensional discrete ordinates radiation transport code. The fluxes obtained from various monitors are in good agreement. The total and fast (>l MeV) neutron fluxes vary from 1.6 {times} 10{sup 19} n/m{sup 2} {center_dot} s and 1.6 {times} 10{sup 18} n/m{sup 2} {center_dot} s, respectively at the ends (HT-1 and -9) of the facility to 4.0 {times} 10{sup 19} n/m{sup 2} {center_dot} s and 4.6 {times} 10{sup 18} n/m{sup 2} {center_dot} s, respectively, at the center (HT-5) of the facility. The thermal-to-fast (>1 MeV) flux ratio varies from about 5.4 at the center to about 6.7 at the ends of the facility. The ratio of fast flux greater than 0.1 MeV to that greater than 1 MeV is 2.0 and stays almost constant along the length of the tube.
Date: February 1, 1995
Creator: Mahmood, S.T.; Mirzadeh, S.; Farrell, K.; Pace, J.V. III & Oliver, B.M.
Partner: UNT Libraries Government Documents Department

A spectral effect on phase evolution in neutron-irradiated aluminum?

Description: It is proposed that the spatial distribution of transmutation-produced silicon precipitates formed in aluminum by capture of thermal neutrons is systematically modified by the fast neutron portion of the spectrum, and the tensile strength is altered accordingly. The concept is used to rationalize some previously erratic tensile data.
Date: December 31, 1994
Creator: Farrell, K.
Partner: UNT Libraries Government Documents Department