8 Matching Results

Search Results

Advanced search parameters have been applied.

A comprehensive study of fracture patterns and densities in the Geysers geothermal reservoir using microearthquake shear-wave splitting tomography. [Quarterly progress report 03/16/1998 - 06/15/1998]

Description: We completed the process of identifying shear-wave splitting in the Geyser area. A total of 2700 observations were recorded with about 1700 observations from the 1988 data and about 1000 observations from 1994. Fast polarization direction map in Figure 1 shows that most of the stations in the Geyser area display consistent direction throughout the main field, between 0{degree} azimuth to 40{degree} azimuth. Some exemptions to the consistent crack alignment (fast polarization direction) can be seen in stations 9 and station 3, and also in stations 13 and 14 outside the field. Since the stations are in boreholes it is possible that some of the station orientations, calculated using P-wave arrivals from located events, are erroneous. If we treat measurements of polarization direction as a statistical process, same as deep of layer measurement, we can say that in the small area of the station we have aligned cracks. Figures 2 and 3 show results of the crack density inversion assuming regional crack azimuth of 20{degree}. Almost 2400 raypaths were used to perform this tomographic inversion. There is weak dependency of the results on the regional crack direction, but the main areas of high and low crack density are the same. The changes are mainly in the size of the anomalies. Since the amplitudes of those anomalies depend mainly on the damping parameter we use in the inversion, exact regional crack direction is not a critical parameter of the inversion. The map in figure 2 and cross-sections in Figure 3 show two areas of high crack density at the top 1 km one at station 8 and the other between stations 6 and 5. At greater depth of 1 to 2 km those two area converge to one high crack density anomaly between stations 3, 4, 11, and 10.
Date: March 17, 1999
Creator: Malin, P.E. & Shalev, E.
Partner: UNT Libraries Government Documents Department

A comprehensive study of fracture patterns and densities in the Geysers geothermal reservoir using microearthquake shear-wave splitting tomography [Quarterly progress report 06/16/1998 - 09/15/1998]

Description: We completed the process of locating events and identifying shear-wave splitting in the mammoth area. A total of 2250 split shear wave observations were recorded in the four month period that our network was in place. Fast polarization direction map in Figure 1 shows that most of the stations in the mammoth area display consistent direction throughout the main field, between 300{degree} azimuth to 0{degree} azimuth. Some exemptions to the consistent crack alignment (fast polarization direction) can be seen in station M19, and some stations display inconsistent trend as can be observed in stations M25, M18, and M07. It is possible that station M19 was misaligned during installment. Figure 2 shows the cumulative rose diagram for all observations with a clear preferred direction. Figure 3 also shows that most of the observations of fast split shear wave are in the same direction and that those observation are distributed throughout the target area. If we treat measurements of polarization direction as a statistical process, same as deep of layer measurement, we can say that in the small area of the station we have aligned cracks. Figures 4 and 5 show results of the crack density inversion assuming regional crack azimuth of 340{degree}. Almost 2000 raypaths were used to perform this tomographic inversion. There is weak dependency of the results on the regional crack direction, but the main areas of high and low crack density are the same. The changes are mainly in the size of the anomalies. Since the amplitudes of those anomalies depend mainly on the damping parameter we use in the inversion, exact regional crack direction is not a critical parameter of the inversion. The map in figure 4 and cross-sections in Figure 5 show two areas of high crack density: one northeast of the Casa Diablo area at ...
Date: March 26, 1999
Creator: Malin, P.E. & Shalev, E.
Partner: UNT Libraries Government Documents Department

HYDROGEOLOGY OF THE THERMAL LANDSLIDE

Description: The large Thermal Landslide overlies the initial area of geothermal development at The Geysers. The landslide is waterbearing while the underlying Franciscan formation bedrock units are essentially non-waterbearing except where affected by hydrothermal alteration. Perched ground water moving through the landslide is heated prior to discharge as spring flow.
Date: January 22, 1985
Creator: Vantine, J.
Partner: UNT Libraries Government Documents Department

A comprehensive study of fracture patterns and densities in the Geysers geothermal reservoir using microearthquake shear-wave splitting tomography. Quarterly report for Sep-Dec 1998

Description: We start organizing the computer programs needed for crack density inversion into an easy to follow scripts. These programs were collection of bits and pieces from many sources and we want to organize those separate programs into coherent product. We also gave a presentation (enclosed) in the Twenty-Fourth Workshop on Geothermal Reservoir Engineering in Stanford University on our Geyser and Mammoth results.
Date: March 31, 1999
Creator: Malin, Peter E. & Shalev, Eylon
Partner: UNT Libraries Government Documents Department

Formation plugging while testing a steam well at The Geysers

Description: During testing of a steam well at The Geysers steam field in Sonoma County, California, rate suddenly dropped by 17,500 lb/hr and wellhead pressure simultaneously increased by 30 psi. There was no evidence of plugging in any of the surface facilities downstream of the wellhead. Pressure buildup tests before and after the incident show that there was a 15% reduction in permeability-thickness. Analysis of pressure losses in the wellbore due to friction showed that all of the rise in wellhead pressure could be explained by the reduction in mass flow that occurred as a result of the 15% reduction in kh. The change in wellhead enthalpy from 1200 Btu/lb and 4-5 F superheat prior to the incident to 1197 Btu/lb and 0-1.4 F superheat after the incident indicates the well became slightly wet. One possible explanation for this reduction in kh is that movement of free water caused a plugging action or a reduction of mobility to steam in one or more steam entries.
Date: January 1, 1978
Creator: Strobel, Calvin J.
Partner: UNT Libraries Government Documents Department

Volatility of HCl and the thermodynamics of brines during brine dryout

Description: Laboratory measurements of liquid-vapor partitioning (volatility) of chlorides from brines to steam can be used to indicate the potential for corrosion problems in geothermal systems. Measurements of volatilities of solutes in chloride brines have established a possible mechanism for the production of high-chloride steam from slightly acidic high temperature brines. Questions concerning the fate of NaCl in the steam production process have been addressed through extensive measurements of its volatility from brines ranging in concentration from dilute solutions to halite saturation. Recent measurements of chloride partitioning to steam over brines in contact with Geysers rock samples are consistent with our concept of the process for production of high-chloride steam.
Date: April 1, 1997
Creator: Simonson, J.M. & Palmer, D.A.
Partner: UNT Libraries Government Documents Department

Liquid-vapor partitioning of NaCl(aq) from concentrated brines at temperatures to 350{degrees}C

Description: Compositions of coexisting liquid and vapor phases have been determined at temperatures from 250 to 350{degree}C for brines containing NaCl and either HCl or NaOH by direct sampling of both phases from a static phase-equilibration apparatus. Thermodynamic partitioning constants for NaCl have been determined from the observed compositions of the coexisting phases combined with the known activity coefficients of NaCl(aq) in the liquid phase. An apparent dependence of the values of these partitioning constants on brine concentration is explained by considering the effect of decreasing pressure on the density of the vapor phase. Concentrations of HCl and NaCl in steam produced from various natural brines may be calculated as functions of temperature and brine composition based on these new results coupled with our previous determinations of the partitioning constants for HCl(aq). Application of these results to The Geysers will be discussed in terms of the composition of postulated brines which could be in equilibrium with observed steam compositions at various temperatures.
Date: March 1, 1994
Creator: Simonson, J. M.; Palmer, D. A. & Carter, R. W.
Partner: UNT Libraries Government Documents Department