87 Matching Results

Search Results

Advanced search parameters have been applied.

Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward

Description: The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.
Date: September 1, 2010
Creator: Keating, Gordon N.; Schultz-Fellenz, Emily S. & Miller, Elizabeth D.
Partner: UNT Libraries Government Documents Department

Creating a Geologic Play Book for Trenton-Black River Appalachian Basin Exploration

Description: Preliminary isopach and facies maps, combined with a literature review, were used to develop a sequence of basin geometry, architecture and facies development during Cambrian and Ordovician time. The main architectural features--basins, sub basins and platforms--were identified and mapped as their positions shifted with time. This is significant because a better understanding of the control of basin geometry and architecture on the distribution of key facies and on subsequent reservoir development in Ordovician carbonates within the Trenton and Black River is essential for future exploration planning. Good exploration potential is thought to exist along the entire platform margin, where clean grainstones were deposited in skeletal shoals from Indiana thorough Ohio and Ontario into Pennsylvania. The best reservoir facies for the development of hydrothermal dolomites appears to be these clean carbonates. This conclusion is supported by observations taken in existing fields in Indiana, Ontario, Ohio and New York. In contrast, Trenton-Black River production in Kentucky and West Virginia has been from fractured, but non-dolomitized, limestone reservoirs. Facies maps indicate that these limestones were deposited under conditions that led to a higher argillaceous content than the cleaner limestones deposited in higher-energy environments along platform margins. However, even in the broad area of argillaceous limestones, clean limestone buildups have been observed in eastern outcrops and, if present and dolomitized in the subsurface, may provide additional exploration targets. Structure and isopach maps developed as part of the structural and seismic study supported the basin architecture and geometry conclusions, and from them some structural control on the location of architectural features may be inferred. This portion of the study eventually will lead to a determination of the timing relative to fracturing, dolomitization and hydrocarbon charging of reservoirs in the Trenton and Black River carbonates. The focus of this effort will shift in the next few ...
Date: September 30, 2005
Creator: Patchen, Douglas G.; Smith, Taury; Riley, Ron; Baranoski, Mark; Harris, David; Hickman, John et al.
Partner: UNT Libraries Government Documents Department

Establishing the Relationship between Fracture-Related Dolomite and Primary Rock Fabric on the Distribution of Reservoirs in the Michigan Basin

Description: This topical report covers the year 2 of the subject 3-year grant, evaluating the relationship between fracture-related dolomite and dolomite constrained by primary rock fabric in the 3 most prolific reservoir intervals in the Michigan Basin (Ordovician Trenton-Black River Formations; Silurian Niagara Group; and the Devonian Dundee Formation). The characterization of select dolomite reservoirs has been the major focus of our efforts in Phase II/Year 2. Fields have been prioritized based upon the availability of rock data for interpretation of depositional environments, fracture density and distribution as well as thin section, geochemical, and petrophysical analyses. Structural mapping and log analysis in the Dundee (Devonian) and Trenton/Black River (Ordovician) suggest a close spatial relationship among gross dolomite distribution and regional-scale, wrench fault related NW-SE and NE-SW structural trends. A high temperature origin for much of the dolomite in the 3 studied intervals (based upon initial fluid inclusion homogenization temperatures and stable isotopic analyses,) coupled with persistent association of this dolomite in reservoirs coincident with wrench fault-related features, is strong evidence for these reservoirs being influenced by hydrothermal dolomitization. For the Niagaran (Silurian), a comprehensive high resolution sequence stratigraphic framework has been developed for a pinnacle reef in the northern reef trend where we had 100% core coverage throughout the reef section. Major findings to date are that facies types, when analyzed at a detailed level, have direct links to reservoir porosity and permeability in these dolomites. This pattern is consistent with our original hypothesis of primary facies control on dolomitization and resulting reservoir quality at some level. The identification of distinct and predictable vertical stacking patterns within a hierarchical sequence and cycle framework provides a high degree of confidence at this point that results will be exportable throughout the basin. Ten petrophysically significant facies have been described in the northern reef ...
Date: September 30, 2006
Creator: Grammer, G. Michael
Partner: UNT Libraries Government Documents Department

The Geology of Long Island, New York

Description: Report describing the geology of Long Island based on surveys and research conducted 1903-1905, with a particular emphasis on glacial deposits and formations from the Pleistocene epoch. It includes a broad discussion, with tabular summaries.
Date: 1912
Creator: Fuller, Myron L.
Partner: UNT Libraries Government Documents Department

Geology and Recognition Criteria for Uraniferous Humate Depostis, Grants Uranium Region, New Mexico: Final Report

Description: Extended literature review describing the geologic history and characteristics of the Grants Uranium Region in northwestern New Mexico, particularly the uraniferous humate uranium deposits, "for the purpose of describing those geologic recognition criteria which seem most useful for evaluating areas with potential for new deposits" (p. 13).
Date: January 1981
Creator: Adams, Samuel S. & Saucier, A. E.
Partner: UNT Libraries Government Documents Department

Tectonic Setting and Characteristics of Natural Fractures in MesaVerde and Dakota Reservoirs of the San Juan Basin

Description: The Cretaceous strata that fill the San Juan Basin of northwestern New Mexico and southwestern Colorado were shortened in a generally N-S to NN13-SSW direction during the Laramide orogeny. This shortening was the result of compression of the strata between southward indentation of the San Juan Uplift at the north edge of the basin and northward to northeastward indentation of the Zuni Uplift from the south. Right-lateral strike-slip motion was concentrated at the eastern and western basin margins of the basin to form the Hogback Monocline and the Nacimiento Uplift at the same time, and small amounts of shear may have been pervasive within the basin as well. Vertical extension fractures, striking N-S to NNE-SSW with local variations (parallel to the Laramide maximum horizontal compressive stress), formed in both Mesaverde and Dakota sandstones under this system, and are found in outcrops and in the subsurface of the San Juan Basin. The immature Mesaverde sandstones typically contain relatively long, irregular, vertical extension fractures, whereas the quartzitic Dakota sandstones contain more numerous, shorter, sub-parallel, closely spaced, extension fractures. Conjugate shear planes in several orientations are also present locally in the Dakota strata.
Date: December 20, 2000
Creator: Lorenz, John C. & Cooper, Scott P.
Partner: UNT Libraries Government Documents Department

Microbial Transport, Survival, and Succession in a Sequence of Buried Sediments

Description: Two chronosequence of unsaturated buried loess sediments ranging in age from <10,000 years to >1 million years were investigated to reconstruct patterns of microbial ecological succession that have occurred since sediment burial. The relative importance of microbial transport and survival to succession were inferred from sediment ages, porewater ages, patterns of abundance (measured by direct counts, counts of culturable cells, and total phospholipid fatty acids), activities (measured by radiotracer and enzyme assays), and community composition (measured by phospholipid fatty acid patterns and Biolog substrate usage). Samples were collected by coring at two sites 40 km apart in the Palouse region of eastern Washington State near the towns of Washtucna and Winona. The Washtucna site was flooded multiple times during the Pleistocene by glacial outburst floods; the elevation of the Winona site is above flood stage. Sediments at the Washtucna site were collected from near surface to 14.9 m depth, where the sediment age was {approx}250 ka and the porewater age was 3700 years; sample intervals at the Winona site ranged from near surface to 38 m (sediment age: {approx}1 Ma; porewater age: 1200 years). Microbial abundance and activities declined with depth at both sites; however, even the deepest, oldest sediments showed evidence of viable microorganisms. Sediments of equivalent age had equal quantities of microorganisms, but differing community types. Differences in community make-up between the two sites can be attributed to differences in groundwater recharge and paleoflooding. Estimates of the ages of the microbial communities can be constrained by porewater and sediment ages. In the shallower sediments (<9 m at Washtucna, <12 m at Winona), the microbial communities are likely similar in age to the groundwater; thus, microbial succession has been influenced by recent transport of microorganisms from the surface. In the deeper sediments, the populations may be considerably older than ...
Date: January 5, 1995
Creator: Kieft, T.L.; Murphy, E.M.; Haldeman, D.L.; Amy, P.S.; Bjornstad, B.N.; McDonald, E.V. et al.
Partner: UNT Libraries Government Documents Department

Structure of the Espanola Basin, Rio Grande Rift, New Mexico, from SAGE seismic and gravity data

Description: Seismic and gravity data, acquired by the SAGE program over the past twelve years, are used to define the geometry of the Espanola basin and the extent of pre-Tertiary sedimentary rocks. The Paleozoic and Mesozoic units have been thinned and removed during Laramide uplift in an area now obscured by the younger rift basin. The Espanola basin is generally a shallow, asymmetric transitional structure between deeper, better developed basins to the northeast and southwest. The gravity data indicate the presence of three narrow, but deep, structural lows arrayed along the Embudo/Pajarito fault system. These sub-basins seem to be younger than the faults on the basin margins. This apparent focussing of deformation in the later history of the basin may be a response to changes in regional stress or more local accommodation of the rift extension. Future work is planned to develop seismic data over one of these sub-basins, the Velarde graben, and to better define the gravity map in order to facilitate three-dimensional modeling.
Date: April 1, 1995
Creator: Ferguson, J.F.; Baldridge, W.S.; Braile, L.W.; Biehler, S.; Gilpin, B. & Jiracek, G.R.
Partner: UNT Libraries Government Documents Department

Isostatic uplift, crustal attenuation, and the evolution of an extensional detachment system in southwestern Nevada

Description: Geological and geophysical evidence supports the existence of extensional detachments, between the Sheep Range and Death Valley. It is proposed that geographically separated pieces of detachments between Death Valley and the Sheep Range are parts of a regional detachment system that has evolved since the Miocene, and that the system consists of lenses of strata separated by an anastomosing network of low- and high-angle normal faults. This manuscript emphasizes the probability that isostatic uplift within the region of greatest crustal attenuation in this system, the Bullfrog Hills core complex, controlled the evolution of the detachment system between the breakaway zone a the Sheep Range and the core complex. Features in this system are described from east to west, which is the apparent direction of tectonic transport.
Date: December 31, 1987
Creator: Scott, R.B.
Partner: UNT Libraries Government Documents Department

New perspectives on quaternary faulting in the southern Walker Lane, Nevada and California

Description: A preliminary survey of aerial photographs of the southern Walker Lane began in late 1986. The purpose of this survey is to determine the nature and scope of future studies required to ascertain whether the apparent concentration of Quaternary faults in and near the Nevada Test Site is real or is simply a result of the greater effort invested in mapping Quaternary deposits in that area, and determine whether faults in the southern Walker Lane are active and could produce significant earthquakes. The survey is focused on the area extending south from Lone Mountain to Pahrump Valley and east from the Furnace Creek fault zone to an irregular line passing through the Cactus Range and Pahute Mesa. Lineaments and scraps were identified on stereopairs of black-and-white aerial photographs at scales of 1:80,000 or 1:60,000. The lineaments and and scarps were plotted on 1:24,000- and 1:62,500-scale topographic maps using a PG-2 plotter, and were color-coded according to distinctness and occurrence in Quaternary or Tertiary deposits (age assignments based on appearance in aerial photographs and on existing geologic maps). Additional lineaments identified on the topographic maps were also plotted. Areas of particular interest were selected for more detailed study using larger-scale aerial photographs. Most of the lineaments and scraps identified in the survey, although referred to as faults in this paper, have not been checked in the field. 11 refs., 1 fig.
Date: December 31, 1987
Creator: Reheis, M.C. & Noller, J.S.
Partner: UNT Libraries Government Documents Department

Innovative Methodology for Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basion

Description: During this reporting period, Fortuna retrieved the first oriented horizontal core from the Trenton/Black River in the northern Appalachian Basin. The core came from central New York State, the ''hottest'' play in the Appalachian Basin. A complete well log suite was also collected in the horizontal hole, including an FMI log. After reassembling the core sections, and orienting the core, we analyzed the whole core before it was cut for full-diameter core analyses (e.g., permeability) and before the core was split, in order that we did not miss any features that may be lost during cutting. We recognized and mapped along the core 43 stylolites, 99 veins and several large partially filled vugs. Kinematic indicators suggest multiple phases of strike-slip motion. Master-abutting relationships at intersections (primarily determined from which feature ''cuts'' which other feature) show three stages of stylolite growth: sub horizontal, nearly vertical, and steeply dipping. These development stages reflect vertical loading, tectonic horizontal loading, and finally oblique loading. Hydrothermal dolomite veins cut and are cut by all three stages of the stylolites. A set of horizontal veins indicates vertical unloading. Analyses of the core will continue, as well as the well logs.
Date: May 31, 2006
Creator: Jacobi, Rober
Partner: UNT Libraries Government Documents Department

Multi-Site Application of the Geomechanical Approach for Natural Fracture Exploration

Description: In order to predict the nature and distribution of natural fracturing, Advanced Resources Inc. (ARI) incorporated concepts of rock mechanics, geologic history, and local geology into a geomechanical approach for natural fracture prediction within mildly deformed, tight (low-permeability) gas reservoirs. Under the auspices of this project, ARI utilized and refined this approach in tight gas reservoir characterization and exploratory activities in three basins: the Piceance, Wind River and the Anadarko. The primary focus of this report is the knowledge gained on natural fractural prediction along with practical applications for enhancing gas recovery and commerciality. Of importance to tight formation gas production are two broad categories of natural fractures: (1) shear related natural fractures and (2) extensional (opening mode) natural fractures. While arising from different origins this natural fracture type differentiation based on morphology is sometimes inter related. Predicting fracture distribution successfully is largely a function of collecting and understanding the available relevant data in conjunction with a methodology appropriate to the fracture origin. Initially ARI envisioned the geomechanical approach to natural fracture prediction as the use of elastic rock mechanics methods to project the nature and distribution of natural fracturing within mildly deformed, tight (low permeability) gas reservoirs. Technical issues and inconsistencies during the project prompted re-evaluation of these initial assumptions. ARI's philosophy for the geomechanical tools was one of heuristic development through field site testing and iterative enhancements to make it a better tool. The technology and underlying concepts were refined considerably during the course of the project. As with any new tool, there was a substantial learning curve. Through a heuristic approach, addressing these discoveries with additional software and concepts resulted in a stronger set of geomechanical tools. Thus, the outcome of this project is a set of predictive tools with broad applicability across low permeability gas basins ...
Date: March 31, 2006
Creator: Billingsley, R. L. & Kuuskraa, V.
Partner: UNT Libraries Government Documents Department

Paleoseismic investigations of Stagecoach Road fault, southeastern Yucca Mountain, Nye County, Nevada

Description: This report summarizes the results of paleoseismic investigations at two trenches (SCR-T1 and SCR-T3) excavated across the Stagecoach Road (SCR) fault at the southeastern margin of Yucca Mountain. The results of these studies are based on detailed mapping or logging of geologic and structural relationships exposed in trench walls, combined with descriptions of lithologic units, associated soils, and fault-related deformation. The ages of trench deposits are determined directly from geochronologic dating of selected units and soils, supplemented by stratigraphic and soil correlations with other surficial deposits in the Yucca Mountain area. The time boundaries used in this report for subdivision of the Quaternary period are listed in a table. These data and interpretations are used to identify the number, amounts, timing, and approximately lengths of late to middle Quaternary (less than 200 ka) surface-faulting events associated with paleoearthquakes at the trench sites. This displacement history forms the basis for calculating paleoearthquake recurrence intervals and fault-slip rates for the Stagecoach Road fault and allows comparison with fault behavior on other Quaternary faults at or near Yucca Mountain.
Date: April 1, 1998
Creator: Menges, C.M.; Oswald, J.A.; Coe, J.A.; Lundstrom, S.C.; Paces, J.B.; Mahan, S.A. et al.
Partner: UNT Libraries Government Documents Department

Sequence Stratigraphic Analysis and Facies Architecture of the Cretaceous Mancos Shale on and Near the Jicarilla Apache Indian Reservation, New Mexico-their relation to Sites of Oil Accumulation

Description: The purpose of phase 1 and phase 2 of the Department of Energy funded project Analysis of oil- bearing Cretaceous Sandstone Hydrocarbon Reservoirs, exclusive of the Dakota Sandstone, on the Jicarilla Apache Indian Reservation, New Mexico was to define the facies of the oil producing units within the Mancos Shale and interpret the depositional environments of these facies within a sequence stratigraphic context. The focus of this report will center on (1) redefinition of the area and vertical extent of the ''Gallup sandstone'' or El Vado Sandstone Member of the Mancos Shale, (2) determination of the facies distribution within the ''Gallup sandstone'' and other oil-producing sandstones within the lower Mancos, placing these facies within the overall depositional history of the San Juan Basin, (3) application of the principals of sequence stratigraphy to the depositional units that comprise the Mancos Shale, and (4) evaluation of the structural features on the Reservation as they may control sites of oil accumulation.
Date: August 21, 2001
Creator: Ridgley, Jennie
Partner: UNT Libraries Government Documents Department

Naturally fractured reservoirs: Optimized E and P strategies using a reaction-transport-mechanical simulator in an integrated approach. Annual report, 1996--1997

Description: The methodology and results of this project are being tested using the Andector-Goldsmith Field in the Permian Basin, West Texas. The study area includes the Central Basin Platform and the Midland Basin. The Andector-Goldsmith Field lies at the juncture of these two zones in the greater West Texas Permian Basin. Although the modeling is being conducted in this area, the results have widespread applicability to other fractured carbonate and other reservoirs throughout the world.
Date: July 1, 1998
Creator: Hoak, T.; Jenkins, R.; Ortoleva, P.; Ozkan, G.; Shebl, M.; Sibo, W. et al.
Partner: UNT Libraries Government Documents Department

Applications of isotope geochemistry to the reconstruction of Yucca Mountain, Nevada, paleohydrology -- Status of investigations: June 1996

Description: Tunneling of the Exploratory Studies Facility has offered the opportunity to sample and examine occurrences of secondary mineralization found in the unsaturated-zone tuffs of Yucca Mountain, nevada. Petrographic and paragenetic analyses, calcite and silica-phase stable isotopic analyses, and preliminary strontium tracer isotope and radiocarbon age analyses of these samples indicate that (1) an early stage of secondary mineralization consisting largely of chalcedony and quartz, but possibly with or slightly preceded by calcite, probably formed at warmer than ambient temperatures; (2) later secondary mineralization consisting of calcite and opal appears completely consistent with formation from percolation of surface infiltration whose solute load and carbon isotopic compositions reflect passage through the overlying soils; (3) based on textural studies, all unsaturated-zone secondary mineral occurrences exposed within the Exploratory Studies Facility tunnel, with the exception of the vapor-phase assemblages that formed at high temperatures during cooling of the tuffs, probably formed in unsaturated settings; and (4) calcite radiocarbon ages, based on preliminary results, have not been compromised by post-depositional exchange with carbon-bearing water and gases in the unsaturated zone.
Date: November 1, 1998
Creator: Whelan, J.F.; Moscati, R.J.; Allerton, S.B.M. & Marshall, B.D.
Partner: UNT Libraries Government Documents Department

Paleohydrologic investigations in the vicinity of Yucca Mountain: Late Quaternary paleobotanical and polynological records

Description: The primary objective of this research in the vicinity of the proposed Yucca Mountain Nuclear Waste Repository is the detection of episodes of increased runoff and groundwater discharge in this presently arid area. Ancient, inactive spring deposits in nearby valley bottoms (Haynes, 1967; Quade, 1986; Quade and Pratt, 1989), evidence for perennial water in presently dry canyons (Spaulding, 1992), and recent claims for extraordinary increases in precipitation during the last glacial age (Forester, 1994), provide good reason to further investigate both lowland spring-discharge habitats, and upland drainages. The ultimate purpose is to assess the long-term variability of the hydrologic system in the vicinity of Yucca Mountain in response to naturally occurring climatic changes. The data generated in the course of this study are derived from radiocarbon dated packrat (Neotoma) middens. This report presents the results of an initial assessment of the hydrologic stability of the candidate area based on a limited suite of middens from localities that, on geomorphic and hydrologic grounds, could have been close to ancient stream-side or spring environments. Paleoclimatic reconstructions are another means of studying the long-term climatic hydrologic stability of the Candidate Area include, and are also generated from packrat midden data. A different flora characterized the Candidate Area during the last glacial age in response to a cooler and wetter climate, and the plant species that comprised this flora can be used to reconstruct specific components of past climatic regimes. Thus, a secondary objective of this study is to compare the plant macrofossil data generated in this study to other records from the Candidate Area (Spaulding, 1985; Wigand, 1990) to determine if these new data are consistent with prior reconstructions. 66 refs., 4 figs., 13 tabs.
Date: October 5, 1994
Creator: Spaulding, W.G.
Partner: UNT Libraries Government Documents Department

Major structural controls on the distribution of pre-Tertiary rocks, Nevada Test Site vicinity, southern Nevada

Description: The lateral and vertical distributions of Proterozoic and Paleozoic sedimentary rocks in southern Nevada are the combined products of original stratigraphic relationships and post-depositional faults and folds. This map compilation shows the distribution of the pre-Tertiary rocks in the region including and surrounding the Nevada Test Site. It is based on considerable new evidence from detailed geologic mapping, biostratigraphic control, sedimentological analysis, and a review of regional map relationships. Proterozoic and Paleozoic rocks of the region record paleogeographic transitions between continental shelf depositional environments on the east and deeper-water slope-facies depositional environments on the west. Middle Devonian and Mississippian sequences, in particular, show strong lateral facies variations caused by contemporaneous changes in the western margin of North America during the Antler orogeny. Sections of rock that were originally deposited in widely separated facies localities presently lie in close proximity. These spatial relationships chiefly result from major east- and southeast-directed thrusts that deformed the region in Permian or later time. Somewhat younger contractional structures are identified within two irregular zones that traverse the region. These folds and thrusts typically verge toward the west and northwest and overprint the relatively simple pattern of the older contractional terranes. Local structural complications are significant near these younger structures due to the opposing vergence and due to irregularities in the previously folded and faulted crustal section. Structural and stratigraphic discontinuities are identified on opposing sides of two north-trending fault zones in the central part of the compilation region north of Yucca Flat. The origin and significance of these zones are enigmatic because they are largely covered b Tertiary and younger deposits. These faults most likely results from significant lateral offset, most likely in the sinistral sense. Low-angle normal faults that are at least older than Oligocene, and may pre-date Late Cretaceous time are also present ...
Date: October 23, 1998
Creator: Cole, J. C.
Partner: UNT Libraries Government Documents Department